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Green’s function for the Laplace–Beltrami operator
on the surface of a three-dimensional ring torus is
constructed. An integral ingredient of our approach
is the stereographic projection of the torus surface
onto a planar annulus. Our representation for Green’s
function is written in terms of the Schottky–Klein
prime function associated with the annulus and the
dilogarithm function. We also consider an application
of our results to vortex dynamics on the surface of
a torus.

1. Introduction
The subject of potential theory on surfaces is of interest
across many areas in the mathematical sciences both
from a purely abstract perspective and in the context of
numerous diverse physical applications. Of fundamental
importance to this subject is Green’s function for the
Laplace–Beltrami operator on the surface. For both
analytical and computational purposes, it is valuable to
have explicit representations for this function.

The simplest case is that of the Euclidean plane, and
for this, Green’s function is of course elementary. Green’s
function is also well-known for the case of the sphere;
explicit representations are presented, for example, in
Kimura & Okamoto [1], Kimura [2], and also Crowdy &
Cloke [3]. Kimura [2] also considers the case of the
hyperbolic plane. However, for more complex surfaces,
for example of higher genus or non-constant curvature,
the theory is mathematically more complicated and far
fewer explicit results are known. Perhaps the simplest
such surface is that of the ring torus, and this is therefore
a natural first choice on which to attempt to extend the
existing theory.

In this paper, we construct an explicit representation
for Green’s function for the Laplace–Beltrami operator on
a toroidal surface. This representation is as a function of
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a single complex variable. To the best of the authors’ knowledge, this is the first such explicit
formula to be constructed for this function.

We have chosen deliberately to address this issue from the most general potential theoretical
viewpoint, with the intention that the mathematics developed herein can be readily applied
elsewhere to solve problems on the torus for which the Laplace–Beltrami equation turns out to
be the governing equation. Understanding potential theory on surfaces such as the torus could
yield valuable insight into interesting phenomena occurring in numerous areas, including, for
example, vortex dynamics. Indeed, it is primarily within this context that [1–3] all arose. Much of
the existing theory regarding vortex dynamics on curved surfaces pertains to compact surfaces
of genus zero and in particular the sphere, owing largely to the desire to understand various
physical phenomena that occur on the Earth’s surface; indeed, a vast body of work has emerged
since the late 1970s involving various models of systems of point vortices on the sphere beginning
with Bogomolov [4], and including Crowdy & Cloke [3], Kimura & Okamoto [1], Boatto & Simó
[5] and Kidambi & Newton [6,7]. However, fewer results are known explicitly for more general
surfaces. In addition to Kimura [2], Kim [8] has analysed the case of the spheroid, while both Hally
[9] and Boatto & Koiller [10] have considered point vortex motion on general curved surfaces
from a more abstract point of view. As stated in [2], results concerning more general curved
surfaces are likely to find relevance beyond the realms of classical fluid mechanics. We mention,
for example, quantum mechanics and flows of superfluid films [11]. Indeed, Corrada–Emmanuel
[12] has found an exact solution for the velocity field for so-called superfluid film vortices on the
surface of a torus. Another potential application of the results in this paper is in the so-called
‘best-packing’ problem for points on a compact surface; this problem arises in numerous areas,
including statistical sampling and computer-aided design. Hardin & Saff [13] have analysed this
problem on the torus, in addition to other compact surfaces. Recently, Newton & Sakajo [14] have
investigated the link between these optimum point distributions and point vortex equilibria for
the case of the sphere. It may be possible to conduct an analysis similar to that of Newton & Sakajo
[14] on a toroidal surface.

Our method can be summarized as follows. At the heart of the approach used by Crowdy &
Cloke [3] is the stereographic projection of the sphere onto the complex plane. Other authors
including [2,7,8] also use stereographic projection from the surface in consideration to the
complex plane. Being cast in terms of a single complex variable turns out to be a particularly
expedient approach, in addition to being mathematically elegant. Indeed, viewing the surface of
the sphere in this way, Crowdy and co-workers have been able to discover classes of analytical
solutions describing various vortical structures on the sphere (for example, in addition to [3],
see [15–17]). In the light of these advantages, we have chosen to couch our work in a similar
complex variable framework. We introduce a stereographic projection of the surface of the torus
onto a concentric annulus in the plane, and show how to write the Laplace–Beltrami operator on
the torus in terms of the complex coordinates in this plane, and then integrate a corresponding
Laplace–Beltrami equation to obtain Green’s function associated with the torus. We remark that
Corrada-Emmanuel [12] also employs the technique of stereographic projection to map the torus
surface onto a planar rectangular cell.

In terms of our complex variable, Green’s function must be doubly periodic. Similar properties
are exhibited by Green’s functions in doubly periodic lattices of parallelograms or rectangles in
the plane [18,19] and also arise in studying point vortex dynamics in such domains [20–23]; these
rectangular cells are in fact often dubbed ‘flat tori’. Solutions for these are commonly constructed
in terms of elliptic functions in order to capture their required double periodicity. More recently,
Crowdy [24] has dealt with such a problem by transforming the rectangular cells to concentric
annuli and by using a special function, related to elliptic functions, known as the Schottky–Klein
prime function. We will use this function to construct our doubly periodic solution for Green’s
function associated with the torus. We also appeal to another special function known as the
dilogarithm function [25]. It is important to bear in mind that although we address the present
problem in terms of a planar variable, the intrinsic curvature effects of the three-dimensional
toroidal surface are fully incorporated into our theoretical framework.

http://rspa.royalsocietypublishing.org/


3

rspa.royalsocietypublishing.org
ProcRSocA469:20120479

..................................................

 on December 4, 2012rspa.royalsocietypublishing.orgDownloaded from 
To complete the paper, we choose to illustrate an application of our theory from a perspective
in vortex dynamics, motivated by extending the existing work in this area on the sphere referred
to above. In this context, Green’s function is equivalent to the streamfunction for the flow. The
representation we derive for this function can be viewed as the analogue on the torus of that
presented by Crowdy & Cloke [3] on the sphere.

2. Formulation of problem
Let TR,r denote the surface of the ring torus consisting of points (x, y, z) ∈ R

3 where

x = (R − r cos θ) cosφ, y = (R − r cos θ) sinφ and z = r sin θ . (2.1)

Here, R and r are the major and minor radii, respectively, R> r, and θ ,φ ∈ [0, 2π ]. TR,r is formed by
taking a circle C of radius r centred a distance R from the origin in the (x, z)-plane, and rotating it
through 2π about the z-axis. θ denotes the angle around the circle C, and φ denotes the azimuthal
angle about the z-axis. It can be shown that the Laplace–Beltrami operator on the surface of the
torus TR,r in terms of the coordinates (2.1) is given by

∇2
TR,r

≡ 1
r2(R − r cos θ)

∂

∂θ

(
(R − r cos θ)

∂

∂θ

)
+ 1
(R − r cos θ)2

∂2

∂φ2 . (2.2)

We seek Green’s function ψ(θ ,φ) for the operator ∇2
TR,r

. This is a real-valued function and satisfies
the equation

∇2
TR,r
ψ(θ ,φ)= δ(θ ,φ; θ0,φ0)− 1

4π2rR
(2.3)

where δ(θ ,φ; θ0,φ0) represents the Dirac delta function. We remark that the additive constant term
on the right-hand side of (2.3) is required by Gauss’s divergence theorem, and that 4π2rR is the
surface area of the torus TR,r. Note that we could have chosen any function to add to the right-
hand side of (2.3) provided Gauss’s divergence theorem is satisfied, but our choice of the constant
−1/4π2rR is the simplest and turns out to be meaningful in numerous physical problems where
this Green’s function arises.

We shall solve for ψ(θ ,φ) by transforming the problem to a complex plane, as follows.

3. Stereographic projection
The stereographic projection from the torus TR,r to a rectangle in a complex Z-plane is presented
in Akhiezer [26]:

Z = φ + i
∫ θ

0

dθ ′

α − cos θ ′ , where α = R
r

. (3.1)

This map is one–one and conformal, and the dimensions of the rectangle are 2π and L, where

L =
∫ 2π

0

dθ ′

α − cos θ ′ = 2πA, where A= 1√
α2 − 1

. (3.2)

It is well known that the conformal map from this rectangle to a concentric annulus Dζ = {ζ |ρ ≤
|ζ | ≤ 1}, where ρ = e−L is

ζ(Z)= eiZ. (3.3)

Thus, the stereographic projection of TR,r to Dζ can be written in the form

ζ = q(θ) eiφ , (3.4)

where

q(θ)= exp
(

−
∫ θ

0

dθ ′

α − cos θ ′

)
(3.5)

http://rspa.royalsocietypublishing.org/
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and
∫ θ

0

dθ ′

α − cos θ ′ = 2A tan−1

(√
α + 1
α − 1

tan
(
θ

2

))
. (3.6)

Equation (3.4) is analogous in functional form to the stereographic projection to the plane of the
sphere considered by Crowdy & Cloke [3]. Note that ζ �→ e2π iζ corresponds to a rotation through
2π in the φ-direction on TR,r, while ζ �→ ρζ corresponds to a rotation through 2π in the θ -direction
on TR,r. Using the facts that

∂

∂θ

∣∣∣∣
φ

≡ − 1
α − cos θ

(
ζ
∂

∂ζ

∣∣∣∣
ζ̄

+ ζ̄
∂

∂ζ̄

∣∣∣∣
ζ

)
and

∂

∂φ

∣∣∣∣
θ

≡ i

(
ζ
∂

∂ζ

∣∣∣∣
ζ̄

− ζ̄
∂

∂ζ̄

∣∣∣∣
ζ

)
, (3.7)

the operator in (2.2) can be expressed in terms of the complex variables ζ and ζ̄ :

∇2
TR,r

≡ 4|ζ |2
(R − r cos θ)2

∂2

∂ζ∂ζ̄
. (3.8)

It remains to write (R − r cos θ)2 in terms of ζ and ζ̄ . From (3.4) and (3.6), we have

|ζ | = exp

(
−2A tan−1

(√
α + 1
α − 1

tan
(
θ

2

)))
. (3.9)

from which it is possible to deduce that

cos θ = α

(
η2 + 2

α
η + 1

η2 + 2αη + 1

)
(3.10)

and hence that

F(ζ , ζ̄ )≡ R − r cos θ = 2rη/A2

η2 + 2αη + 1
, (3.11)

where η≡ η(ζ , ζ̄ ) is defined as

η(ζ , ζ̄ )≡ |ζ |i/A. (3.12)

Thus, the Laplace–Beltrami operator in terms of the complex variables ζ and ζ̄ is

∇2
TR,r

≡ 4|ζ |2
F2(ζ , ζ̄ )

∂2

∂ζ∂ζ̄
(3.13)

with function F(ζ , ζ̄ ) as defined in (3.11).
We point out that the function

h(ζ , ζ̄ )≡ F(ζ , ζ̄ )
|ζ | (3.14)

appearing in (3.13) is the conformal factor, which gives

ds2 = h2(ζ , ζ̄ )(dq2 + q2 dφ2), (3.15)

where ds denotes an element of length on the surface of the torus.

http://rspa.royalsocietypublishing.org/
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4. Construction of solution
Let us write Green’s function ψ(ζ , ζ̄ ), to be determined, as the sum of two real-valued functions

ψ(ζ , ζ̄ )=ψ0(ζ , ζ̄ )+ ψ1(ζ , ζ̄ ), (4.1)

where ψ0(ζ , ζ̄ ) is the solution to

∇2
TR,r
ψ0(ζ , ζ̄ )= δ(ζ − ζ0) (4.2)

and ψ1(ζ , ζ̄ ) is the solution to

∇2
TR,r
ψ1(ζ , ζ̄ )= − 1

4π2rR
. (4.3)

Here ζ0 corresponds to (θ0,φ0) under the stereographic projection (3.4). Note that the existence of
ψ0(ζ , ζ̄ ) and ψ1(ζ , ζ̄ ) satisfying (4.2) and (4.3) does not contradict Gauss’s divergence theorem if
we allow them both to be multi-valued.

(a) Schottky–Klein prime function
We now introduce a special transcendental function known as the Schottky–Klein prime function
associated with the annulus Dζ . It can be defined through the infinite product

P(ζ , ρ)= (1 − ζ )

∞∏
j=1

(1 − ρjζ )(1 − ρjζ−1). (4.4)

This function has simple zeroes at ζ = ρn, n ∈ Z, and satisfies the functional relation

P(ρζ , ρ)= −ζ−1P(ζ , ρ). (4.5)

An accessible overview of the Schottky–Klein prime function is given by Crowdy [27]. We also
introduce another special function that is related to P(ζ , ρ) by

K(ζ , ρ)= ζP′(ζ , ρ)
P(ζ , ρ)

(4.6)

where P′(ζ , ρ) denotes the derivative of P(ζ , ρ) with respect to the first argument. This function
has simple poles at ζ = ρn, n ∈ Z (i.e. at the simple zeroes of P(ζ , ρ)), and satisfies the functional
relation

K(ρζ , ρ)= K(ζ , ρ)− 1, (4.7)

i.e. it is quasi-periodic as ζ �→ ρζ .

(b) The derivative ∂ψ(ζ , ζ̄ )/∂ζ
We first construct the derivative ∂ψ(ζ , ζ̄ )/∂ζ , as follows.

Let us first find ∂ψ0(ζ , ζ̄ )/∂ζ . We propose

∂ψ0(ζ , ζ̄ )
∂ζ

= K(ζ/ζ0, ρ)
4πζ

+ γ

2ζ
, (4.8)

for some γ ∈ C. We can check that (4.8) satisfies (4.2) as follows. Let T denote the surface of the
torus TR,r and let dA be an area element on T. Let dσ be an area element in the ζ -plane. We must

http://rspa.royalsocietypublishing.org/
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have ∫∫
T

∇2
TR,r
ψ0(θ ,φ)dA =

∫∫
T
δ(θ ,φ; θ0,φ0)dA = 1. (4.9)

By transforming variables (θ ,φ)→ (ζ , ζ̄ ), it can be shown that
∫∫

T
∇2
TR,r
ψ0(θ ,φ)dA = 4

∫∫
Dζ

∂2ψ0(ζ , ζ̄ )
∂ζ ∂ζ̄

dσ . (4.10)

By Green’s theorem ∫∫
Dζ

∂2ψ0(ζ , ζ̄ )
∂ζ ∂ζ̄

dσ = − i
2

∮
∂Dζ

∂ψ0(ζ , ζ̄ )
∂ζ

dζ (4.11)

where ∂Dζ denotes the boundary of Dζ . Hence, we require
∮
∂Dζ

∂ψ0(ζ , ζ̄ )
∂ζ

dζ = i
2

. (4.12)

Invoking the Argument Principle, and the fact that K(ζ/ζ0, ρ) has a single simple pole in Dζ at
ζ = ζ0 with residue 1, it can be shown that∮

∂Dζ

(
K(ζ/ζ0, ρ)

4πζ
+ γ

2ζ

)
dζ = i

2
. (4.13)

This completes our check of (4.8).
We now solve for ∂ψ1(ζ , ζ̄ )/∂ζ . It follows immediately from (4.3) that

∂ψ1(ζ , ζ̄ )
∂ζ

= − 1
16π2rRζ

∫ ζ̄ F2(ζ , ζ ′)
ζ ′ dζ ′. (4.14)

It can be shown that

ξ(ζ , ζ̄ )≡ − 1
16π2rR

∫ ζ̄ F2(ζ , ζ ′)
ζ ′ dζ ′

= − i
8π2

[
log

(
η − c
η − c−1

)
+ 1
αA

(
c

η − c
+ c−1

η − c−1

)]
+ ς1(ζ ), (4.15)

where η is as in (3.12), ς1(ζ ) is an arbitrary function of ζ and c is the constant given by

c = −
(
α + 1

A

)
. (4.16)

c and 1/c are the roots of η2 + 2αη + 1 = 0. Note that because R> r, it is evident that c ∈ R and
c<−1. We have thus found that

∂ψ1(ζ , ζ̄ )
∂ζ

= ξ(ζ , ζ̄ )
ζ

. (4.17)

By adding (4.8) and (4.17), we see that the derivative of Green’s function ψ(ζ , ζ̄ ) with respect to ζ
is thus

∂ψ(ζ , ζ̄ )
∂ζ

= K(ζ/ζ0, ρ)
4πζ

+ γ

2ζ
+ ξ(ζ , ζ̄ )

ζ
. (4.18)

(c) Green’s functionψ(ζ , ζ̄ )
We now turn our attention to finding an explicit expression for Green’s function ψ(ζ , ζ̄ ) using the
result (4.18) of the previous section.

Integrating (4.8) with respect to ζ yields

ψ0(ζ , ζ̄ )= 1
2π

log
∣∣∣∣P
(
ζ

ζ0
, ρ
)∣∣∣∣+ γ log |ζ |. (4.19)

Here, we have chosen the arbitrary function of ζ̄ of integration in order that ψ0(ζ , ζ̄ ) is indeed a
purely real-valued function.

http://rspa.royalsocietypublishing.org/
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Next, integrating (4.17) with respect to ζ :

ψ1(ζ , ζ̄ )=
∫ ζ ξ(ζ ′, ζ̄ )

ζ ′ dζ ′. (4.20)

The integral in (4.20) can be computed using (4.15) as follows. We shall make use of the
dilogarithm function defined by:

Li2(ζ )= −
∫ ζ

0

log(1 − u)
u

du. (4.21)

Li2(ζ ) is an analytic function of ζ except for branch points at 1 and ∞. We choose a branch
cut along the section of the real line [1, ∞) in order to make it single-valued. A comprehensive
discussion of the various properties of the dilogarithm function is given by Maximon [25]. Writing

log
(
η − c
η − c−1

)
= log(1 − c−1η)− log(1 − c−1η−1)− log η + log(−c), (4.22)

it is possible to show that

∫ ζ
log

(
η − c
η − c−1

)
dζ ′

ζ ′

= 2iA
(

Li2(c−1η)+ Li2(c−1η−1)+ 1
2 (log η)2 − log(−c) log η

)
+ ς2(ζ̄ ). (4.23)

Also,

∫ ζ ( c
η − c

+
−1

η − c−1

)
dζ ′

ζ ′ = −2iA(log(η − c)+ log(η − c−1)− 2 log η)+ ς3(ζ̄ ). (4.24)

In (4.23) and (4.24), ς2(ζ̄ ) and ς3(ζ̄ ) are arbitrary functions of ζ̄ . Now, note the following property
of Li2(ζ ), which can be deduced from its Taylor series expansion [25]:

Li2(ζ̄ )= Li2(ζ ), for all ζ such that |ζ |< 1. (4.25)

From (3.12), it may be deduced that |η| = 1 for all ζ . Recall also that |c|> 1 and so |c−1η|< 1 for all
ζ . Hence, using (4.25) and the fact that c ∈ R, we have

Li2(c−1η)+ Li2(c−1η−1)= 2Re{Li2(c−1η)}. (4.26)

Furthermore, again using the facts that |η| = 1 and c ∈ R, we have

log(η − c)+ log(η − c−1)= 2 log |η − c| + log η − log(−c). (4.27)

By combining the above, we arrive at

ψ1(ζ , ζ̄ )= λ1Re{Li2(c−1η)} + λ2 log |η − c| + λ3(log |ζ |)2 + λ4 log |ζ | + λ5 (4.28)

where {λj|j = 1, . . . , 5} ∈ R are constants (i.e. independent of both ζ and ζ̄ ), with

λ1 = A
2π2 , λ2 = − 1

2π2α
and λ3 = − 1

8π2A
. (4.29)

λ4 and λ5 are yet to be specified owing to the arbitrary function of ζ in (4.15) and the arbitrary
functions of ζ̄ in (4.23) and (4.24). We can determine λ4 and λ5 as follows. First recall that
ψ1(ζ , ζ̄ ) must be a real-valued function. Using this fact, it follows from (4.28) that λ4 and λ5 must
both be real.

Furthermore, the complete Green’s function ψ(ζ , ζ̄ ) must be single-valued on the torus and
hence invariant with respect to the transformations ζ �→ e2π iζ and ζ �→ ρζ . It is straightforward

http://rspa.royalsocietypublishing.org/
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to check that for any choice of λ4 and λ5, the right-hand side of (4.28) is invariant with respect to
ζ �→ e2π iζ . Now consider ζ �→ ρζ . It follows from (4.19) and (4.5) that

ψ0(ρζ , ρζ̄ )=ψ0(ζ , ζ̄ )− 1
2π

log |ζ | (4.30)

provided we make the choice

γ = log |ζ0|
4π2A

. (4.31)

Next, it can be deduced from (3.12) that ζ �→ ρζ corresponds to η �→ e−2π iη. Because |η| = 1 for all
ζ , ζ �→ ρζ corresponds to η, moving once in the clockwise direction around the unit η-circle. Note
that because |c|> 1, then |c−1η|< 1, and so as η �→ e−2π iη, c−1η does not go through the branch cut
along [1, ∞) associated with the dilogarithm function so the first term of (4.28) does not change.
It follows from (4.28) that

ψ1(ρζ , ρζ̄ )=ψ1(ζ , ζ̄ )+ λ3(2 log ρ log |ζ | + (log ρ)2)+ λ4 log ρ. (4.32)

Hence, adding (4.30) and (4.32), it follows that we must have

λ4 = − 1
4π

. (4.33)

Finally, λ5 ∈ R but may otherwise be chosen arbitrarily. We may wish to choose λ5 so that the
complete Green’s function satisfies a reciprocity condition.

Green’s function for the operator ∇2
TR,r

is thus found to be

ψ(ζ , ζ̄ )= 1
2π

log
∣∣∣∣P
(
ζ

ζ0
, ρ
)∣∣∣∣+ λ1Re{Li2(c−1|ζ |i/A)}

+ λ2 log ||ζ |i/A − c| + λ3(log |ζ |)2 +
(
γ −

(
1

4π

))
log |ζ | (4.34)

with {λj|j = 1, . . . , 3} as in (4.29), γ as in (4.31), c as in (4.16), A as in (3.12) and λ5 = 0 (say).
We point out that it is straightforward to write

log
∣∣∣|ζ |i/A − c

∣∣∣2 = − log h(ζ , ζ̄ )− log |ζ | + const. (4.35)

It follows from well-known results of differential geometry that −∇2
TR,r

log h(ζ , ζ̄ ) equals the
Gaussian curvature of the toroidal surface. This gives a geometrical interpretation to one of the
terms appearing in (4.34).

Finally, we mention that on differentiation of (4.34) with respect to ζ , the function ς1(ζ )

appearing in (4.15) may be identified as the constant

ς1(ζ )= γ

2
+ i

8π2

(
log c − 1

αA

)
. (4.36)

Figure 1 shows contour plots of ψ(ζ , ζ̄ ) in Dζ for the torus T4,1. We chose three distinct values
of the singularity ζ = ζ0, and took them to be real and positive (without loss of generality). The
location of the singularity ζ = ζ0 in each contour plot is apparent. For each value of ζ0, we observe
the existence of a critical point on the negative real axis, and two saddle points: one located on the
positive real axis, and another located on the negative real axis close to the boundary. Inspection
of the eigenvalues of the Hessian matrix ofψ(ζ , ζ̄ ) confirms the existence of the two saddle points,
and reveals that the critical point is in fact a maximum. By our choice of sign of ψ(ζ , ζ̄ ), ζ = ζ0 is
a minimum.

Numerical experiments seem to suggest that under a change of the value of α, the number
of saddle and critical points remains the same. However, changing α does have an effect on the
qualitative appearance of the contours. More specifically, as α→ 1, it appears that, for certain
positions of the singularity ζ0, there exist contours in the ζ -plane that encircle the inner boundary
of Dζ . These correspond to contours on the torus encircling its hole. As an example, illustrated
in figure 2 are contours for the torus T1.6,1, with ζ0 = 0.5. However, because ρ is very small for α
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Figure 1. Contour plots of ψ(ζ , ζ̄ ) in Dζ for the torus T4,1 (for which ρ = 0.19744), for three distinct values of the
singularity ζ = ζ0. (a) ζ0 = 0.275, (b) ζ0 = 0.6, (c) ζ0 = 0.875.

−1.0

−0.5

0

0.5

1.0

−1.0 −0.5 0 0.5 1.0

Figure 2. Contour plot ofψ(ζ , ζ̄ ) in Dζ for the torusT1.6,1 (for which ρ = 0.00654) with ζ0 = 0.5. One observes contours
surrounding the inner boundary circle.

close to 1 (for this particular case, ρ = 0.00654), this behaviour is rather difficult to discern from the
given plot. On the other hand, for α� 1, changing α does not appear to affect the appearance of
the contours. Figure 3 shows contours for the torus T8,1, with ζ0 = 0.7. One observes no qualitative
difference in their appearance compared with those in figure 1. Similar behaviour is observed for
larger α. Finally, we point out that our numerical experiments have been non-exhaustive, and a
rigorous analysis of the behaviour of Green’s function for the torus remains to be performed.

5. Application to vortex dynamics
In this section, we present an application of the foregoing theory to the field of vortex dynamics.
We consider the flow of an infinitesimally thin layer of inviscid, incompressible fluid on TR,r. As
will be shown, the Green’s function we found in (4.34) is the streamfunction describing such a
flow with a single point vortex surrounded by a uniform distribution of vorticity. The interested
reader is referred to the monograph of Saffman [28] for an explanation of the key concepts
used below.

The velocity field of the fluid u on TR,r is purely tangential to the surface; that is, in terms of
the coordinates (r, θ ,φ), we have

u = (0, uθ , uφ), (5.1)
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Figure 3. Contour plot ofψ(ζ , ζ̄ ) inDζ for the torusT8,1 (forwhichρ = 0.453)withζ0 = 0.7. The contours are qualitatively
the same as those in figure 1.

for some uθ , uφ . Owing to the incompressibility condition ∇TR,r · u = 0, we may introduce the
streamfunction ψ(θ ,φ) such that

u = ∇TR,rψ(θ ,φ)× (1, 0, 0)=
(

0,
1

R − r cos θ
∂ψ

∂φ
, −1

r
∂ψ

∂θ

)
. (5.2)

It follows from (3.7) and (5.2) that, in terms of ζ , the velocity field can be expressed in the form

uφ − iuθ = 2ζ
F(ζ , ζ̄ )

∂ψ

∂ζ
. (5.3)

Furthermore, it can be shown that the ‘image’ flow in the ζ -plane is given by

U − iV = − 2i|ζ |2
F2(ζ , ζ̄ )

∂ψ

∂ζ
, (5.4)

where U and V denote, respectively, the components of the velocity in the real and
imaginary directions.

Now introduce the scalar vorticity field ω(θ ,φ) defined by

ω(θ ,φ)= (∇TR,r × u) · (1, 0, 0). (5.5)

Taking the curl of (5.2) and equating with (5.5) yields

∇2
TR,r
ψ(θ ,φ)= −ω(θ ,φ). (5.6)

Because TR,r is a closed compact surface, it follows from Gauss’s Divergence Theorem that we
have an intrinsic topological constraint to enforce on u; that is,

∫∫
T
ω(θ ,φ)dA = 0. (5.7)

Consider now a point vortex on TR,r. This provides a δ-function distribution of vorticity. As
a consequence of (5.7), a single point vortex cannot exist on TR,r unless an additional source
of vorticity is present. One way to resolve this is as follows. Suppose the point vortex has
circulation −1. By endowing the torus with a background sea of uniform vorticity ω0 = 1/4π2rR,
the circulation associated with the point vortex is nullified; thus, the net circulation on TR,r will
automatically be zero and the condition (5.7) satisfied. The streamfunction ψ(θ ,φ) for such a
system will now be deduced.

Suppose the point vortex is at (θ0,φ0) on the surface of TR,r. Then ψ(θ ,φ) satisfies the Laplace–
Beltrami equation (2.3), in which physically, the Dirac delta function δ(θ ,φ; θ0,φ0) corresponds to
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the point vortex at (θ0,φ0) while the additive constant term corresponds to the sea of uniform
vorticity ω0 covering the surface of the torus. We thus identify ψ(θ ,φ) as Green’s function of ∇2

TR,r

found in (4.34).
Consider now the velocity field associated with such a vorticity distribution. It follows

from (5.3) and (4.18) that this is given by

uφ − iuθ = 2
F(ζ , ζ̄ )

(
1

4π
K(ζ/ζ0, ρ)+ γ

2
+ ξ(ζ , ζ̄ )

)
, (5.8)

where ζ0 is the image of the point vortex in the ζ -plane, and functions K(ζ , ρ) and ξ(ζ , ζ̄ ) are as in
(4.6) and (4.15), respectively, recalling also that ς1(ζ ) is given by (4.36). Both K(ζ , ρ) and ξ(ζ , ζ̄ ) are
quasi-periodic as ζ �→ ρζ . We remark that there cannot exist doubly periodic functions in a period
rectangle (and hence the equivalent concentric annulus) corresponding to the contributions to the
velocity field of either the point vortex or the uniform sea of vorticity. We would thus expect a
total velocity field to be the sum of two quasi-periodic functions: one corresponding to the point
vortex, and one corresponding to the sea of uniform vorticity.

On physical grounds, however, the velocity field (5.8) must be single-valued on TR,r and hence
invariant as ζ �→ ρζ and ζ �→ e2π iζ , or equivalently, as η �→ e−2π iη and η �→ η, respectively. We now
demonstrate this explicitly. First, note that the function F(ζ , ζ̄ ) is invariant with respect to both
transformations. It is straightforward to check that (5.8) is invariant with respect to ζ �→ e2π iζ .
Next, consider this expression subject to ζ �→ ρζ . Recall that c ∈ R and |c|> 1. Then, from (4.15), it
may be deduced that

ξ(ρζ , ρζ̄ )= ξ(ζ , ζ̄ )+ 1
4π

. (5.9)

It thus follows from (4.7) and (5.9) that (5.8) is also invariant with respect to ζ �→ ρζ , as required.
Finally, in the ζ -plane, we have from (5.4) that

U − iV = − 2i|ζ |2
F2(ζ , ζ̄ )

(
K(ζ/ζ0, ρ)

4πζ
+ γ

2ζ
+ ξ(ζ , ζ̄ )

ζ

)
. (5.10)

We remark that in (5.10), the simple pole of K(ζ/ζ0, ρ) at ζ = ζ0 gives rise to a singularity that is
reminiscent of a planar point vortex. The pre-multiplying factor incorporates the curvature of the
toroidal surface, and thus generalizes this singularity so that it pertains to a point vortex on a
toroidal surface. Because the curvature of the toroidal surface is non-constant, it is not obvious
whether the point vortex itself is advected by the velocity field (5.10). This issue is raised and
discussed for a general closed surface in Boatto & Koiller [10]. However, clarification of this issue
for the particular case of the torus remains a matter for future investigation.

6. Discussion
In this paper, we have derived, using techniques of complex analysis, an expression for Green’s
function of the Laplace–Beltrami operator on a toroidal surface. By using a stereographic
projection to a planar concentric annulus, and performing the analysis in this projected plane,
our Green’s function admits a particularly concise form in terms of two special functions—
the Schottky–Klein prime function and the dilogarithm function—yet still fully appreciates the
topology of the torus.

The Schottky–Klein prime function is a natural candidate when considering problems in
multiply connected circular domains. Having opted to construct Green’s function in a complex
plane, it was therefore natural to stereographically project the torus onto a concentric annulus
and readily exploit the special properties of the Schottky–Klein prime function and its associated
function theory in this circular domain. Furthermore, the related theory of Schottky groups
naturally extends to provide uniformizations of more general higher genus surfaces. It may
be possible to construct Green’s functions for other surfaces in these terms by generalizing the
analysis presented here.
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It may be interesting to consider our formulation for Green’s function in the limiting case as
the major radius R becomes infinite with the minor radius r remaining fixed. Then, locally, the
toroidal surface appears to be that of an infinitely long cylinder. In this limit, ρ→ 1 and the inner
boundary of the annulus Dζ approaches the outer. It may be more helpful to consider the analysis
in this case in the rectangle in the conformally equivalent Z-plane, re-scaling by a factor of R so
that this rectangle tends to an infinite strip of finite thickness. We may then use the Weierstrass
elliptic functions that are related to P(ζ , ρ) and K(ζ , ρ) in a straightforward manner.

Green’s function we have constructed should have a range of physical interpretations
when considered as a solution to other problems of physical interest where the Laplace–
Beltrami equation on a toroidal surface governs the system. For example, we have shown
that the streamfunction for a point vortex on a toroidal surface is precisely Green’s function
constructed. Our Green’s function should prove to be a convenient starting point for investigating
these problems.

Keeping with the application to vortex dynamics, it would be interesting to emulate the
various systems on a sphere considered by various authors [2,3,7,8,15–17] but on a toroidal
surface. It would be of interest to analyse the possible similarities and differences of the exhibiting
behaviours of the vortical systems between compact surfaces of differing genus. Such lines of
enquiry are matters for future investigation.

The authors thank D. G. Crowdy for helpful discussions and for suggesting this problem as a topic of study.
C.C.G. acknowledges the support of an EPSRC studentship.
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