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Abstract. There has been much recent interest in finding analytical formulae
for conformal mappings from canonical multiply connected circular regions to
multiply connected polygonal regions. Such formulae are the multiply con-
nected generalizations of the Schwarz-Christoffel formula of classical function
theory. A natural generalization of polygonal domains is the class of polycir-
cular arc domains whose boundaries are a union of circular arc segments. This
paper describes a theoretical method for the construction of conformal map-
pings from multiply connected circular domains, of arbitrary finite connectiv-
ity, to conformally equivalent polycircular arc domains. This work generalizes
results on the doubly connected case by Crowdy & Fokas [10].
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1. Introduction

A Schwarz-Christoffel mapping is a conformal mapping from a simple canonical
domain, such as a unit disc, or the upper half plane, to a polygonal domain.
Such mappings commonly arise in both theory and applications and they form
the central topic of an excellent monograph by Driscoll & Trefethen [21]. The
Schwarz-Christoffel mapping (henceforth, S-C mapping) to a simply connected
polygonal domain dates back to the 1860’s [21]; the formula for doubly con-
nected domains was first derived by Akhiezer [2] (see also Komatu [29]). Such
formulae are particularly useful because any simply connected shape can be well
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approximated by a polygon and the S-C mapping formula then provides a con-
structive approach to the conformal mapping problem. The natural question of
generalizing this formula to polygonal domains of arbitrary finite connectivity
remained open until recently. Progress in this direction was partly impeded by
difficulties associated with solving the so-called “parameter problem”, present
even in the simply connected case, together with various other difficulties such
as “crowding” [21]. These practical impediments have now been overcome and
readily-transferable software operating on platforms such as MATLAB are avail-
able [22] in the simply connected case.

Prompted by these numerical developments, the long-standing theoretical prob-
lem of finding general formulae for S-C mappings to higher connected polygonal
domains has recently been solved. DeLillo, Elcrat & Pfaltzgraff [19] were the
first to produce a multiply connected S-C mapping formula from an unbounded
circular region to the unbounded region exterior to a finite collection of polygo-
nal objects. Their arguments rely on use of reflection principles and extend an
approach to doubly connected S-C mappings given in [20]. The S-C formula to
bounded multiply connected polygonal regions was first derived by Crowdy [7]
who introduced novel aspects of classical function theory into the analysis of the
problem. Indeed, employing the machinery of Schottky groups and the associ-
ated function theory, Crowdy was able to write a formula for the mapping, in a
natural way, as the integral of a product of powers of a special transcendental
function known as the Schottky-Klein prime function [3]. The approach extends
naturally to unbounded polygonal regions [8]. A key theoretical ingredient in the
derivation of the formulae in [7, 8] is the use of an intermediate conformal map-
ping from the original circular domain to a circular slit domain. Crowdy [9] has
given a more geometrical derivation of the formulae in [7, 8] and, in particular,
has emphasized the role of conformal slit mappings in the construction. DeLillo
[18] has elucidated theoretical connections between the approaches in [20, 7, 8].

An extension of the theory of S-C mappings is the related theory of mappings
to the so-called polycircular arc domains. These are domains whose boundaries
are made up of arcs of circles. Straight line segments are a particular case of cir-
cular arcs so polycircular arc mappings include S-C mappings as a special case.
Nehari [31] and Ablowitz & Fokas [1] discuss the general theory of conformal map-
pings to simply connected polycircular arc domains. A numerical construction of
such mappings to simply connected regions has been carried out by Bjorstad &
Grosse [6] & Howell [27]. In a recent paper, Crowdy & Fokas [10] have presented
a constructive approach to finding the conformal maps from a concentric annulus
in a complex preimage plane to any bounded doubly connected polycircular arc
domain.

The present paper is a sequel to [10]; it generalizes the construction given there
to the case of polycircular arc domains of any finite connectivity. For domains of
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connectivity greater than two, it is necessary to employ an intermediate confor-
mal mapping to a circular slit domain to derive the relevant formulae — a device
that also proved crucial in the construction of multiply connected S-C mappings
in [7, 8]. This paper also follows that of [7, 8] in emphasizing the theoretical role
played by the Schottky-Klein prime function [3, 26].

2. The conformal mapping problem

Let Dζ be the unit disc in the ζ-plane with M smaller disjoint circular discs
D1, . . . , DM excised. Let C0 denote the unit circle and let C1, . . . , CM be the
boundaries of the discs of D1, . . . , DM . It is known from the multiply connected
generalization of the Riemann Mapping Theorem [25] that any (M+1)-connected
target domain Dz in a complex z-plane can be conformally mapped to some such
circular region Dζ for some choice of the parameters qj, δj, j = 1, . . . ,M , known
as the conformal moduli.

In this paper Dz is taken to be a bounded (M + 1)-connected polycircular arc
domain. It is a bounded (M + 1)-connected region with M + 1 boundaries each
of which is a union of circular arc segments. Let Pj, j = 0, 1, . . . ,M , denote the
boundaries of Dz corresponding to the images of the circles Cj, j = 0, 1, . . . ,M .
For any choice of j = 0, 1, . . . ,M , let Pj be a union of nj circular arc segments
each defined by the equations

(1)
∣∣∣z −∆

(j)
k

∣∣∣2 =
(
Q

(j)
k

)2

, k = 1, . . . , nj,

for some complex parameters ∆
(j)
k , k = 1, . . . , nj, and some real parameters

Q
(j)
k , k = 1, . . . , nj. Actually, our analysis carries over to cases in which certain

portions of the boundary are straight-line segments but, for clarity of exposition,
we focus on the case where all boundary segments satisfy (1). Define

N =
M∑
k=0

nk.

The conformal mapping problem is to find the functional form of a conformal

map from Dζ to Dz. Let the points z
(j)
k , j = 0, . . . ,M , k = 1, . . . , nj, denote the

vertices of Dz, i.e. the points at which the distinct circular arc segments making
up the boundaries intersect. The prevertices on the circles Cj, j = 0, 1, . . . ,M ,

in the ζ-plane are defined to be the points a
(j)
k , j = 0, . . . ,M , k = 1, . . . , nj.

3. The circular slit domain

To proceed with the construction, it is expedient to introduce an intermediate
η-plane. Consider a conformal mapping η(ζ) mapping Dζ to a conformally equiv-
alent circular slit domain Dη. Figure 1 shows a schematic in the triply connected



688 D. G. Crowdy, A. S. Fokas and C. C. Green CMFT

C
0

C
1

C
2

γ
1
(1)γ

2
(1)

γ
1
(2)

γ
2
(2) α

L
0

L
1

L
2

η(α)

Figure 1. A typical circular slit mapping from a triply connected
circular region Dζ in a ζ-plane to a triply connected circular slit
domain Dη in a η-plane. The point α in Dζ maps to the origin in

the η-plane. The points γ
(j)
1 , γ

(j)
2 , j = 1, 2, are also indicated.

case with M = 2. Let the image of C0 under this mapping be the unit circle in
the η-plane which will be called L0. The M circles C1, . . . , CM , have circular slit
images, centred on η = 0, and labeled L1, . . . , LM . Let the arc Lj be specified
by the conditions

|η| = rj, arg[η] ∈ [φ
(j)
1 , φ

(j)
2 ], j = 1, . . . ,M.

There will be two preimage points on the circle Cj in the ζ-plane, for each
j = 1, . . . ,M , corresponding to the two end-points of the circular slit Lj. These

two preimage points, labeled γ
(j)
1 and γ

(j)
2 , satisfy the conditions

η
(
γ

(j)
1

)
= rje

iφ
(j)
1 ,

d

dζ
η
(
γ

(j)
1

)
= 0, j = 1, . . . ,M,

η
(
γ

(j)
2

)
= rje

iφ
(j)
2 ,

d

dζ
η
(
γ

(j)
2

)
= 0, j = 1, . . . ,M.

(2)

These 2M zeros of dη/dζ are simple zeros because the argument changes by 2π
at each of these points.

The conformal mapping to the domain Dz in the z-plane can be viewed either
as a mapping from the preimage region Dζ , or as a mapping from the preimage
region Dη. We will use Z(η) to denote the conformal mapping from Dη to Dz

and then introduce the composite mapping

Z(ζ) ≡ Z(η(ζ)),



11 (2011), No. 2 Conformal Mappings to Multiply Connected Polycircular Arc Domains 689

which maps Dζ to Dz. It is the function Z(ζ) that we seek to find. Naturally,

the prevertices a
(j)
k , j = 0, . . . ,M , k = 1, . . . , nj, introduced earlier satisfy the

conditions

Z
(
a

(j)
k

)
= z

(j)
k , k = 1, . . . , nj, j = 0, 1, . . . ,M.

4. Mathematical formulation

Suppose that the circular arc Lj in the η-plane maps to a general curve C (not
necessarily a circular arc) in a z-plane as shown in Figure 2. Let ŝ denote
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Figure 2. Under the conformal mapping Z(η) the circular arc
Lj, of radius rj and centred at η = 0, is taken to map to a curve C
in the complex z-plane. θ(s) is the angle made by the unit tangent
at a point on C as a function of arclength s along it.

arclength along Lj and let s denote arclength along C. Since Lj is a circular arc
of radius rj centred at η = 0, it is clear that the complex unit tangent along Lj
is

(3)
dη

dŝ
= ± i η

rj
,

where the choice of sign depends on the direction in which ŝ is taken to increase
around Lj. This choice of sign will not matter for our purposes. On the other
hand, the complex unit tangent along C can be written as

dz

ds
= ei θ(s),

where θ(s) is defined as the angle made by the unit tangent with the positive
real axis in the z-plane as shown in Figure 2.



690 D. G. Crowdy, A. S. Fokas and C. C. Green CMFT

It is convenient to consider the two quantities

κ =
dθ

ds
(s),

dκ

ds
=
d2θ

ds2
(s),

where κ is the curvature of C and dκ/ds is its rate of change with respect to
arclength. For cases in which C is either a circular arc or a straight line segment
then, by definition, dκ/ds = 0 and this condition will provide the analytical crite-
rion for the determination of the required conformal mapping. The advantage of
introducing the intermediate η-plane will become clear in deriving this criterion.

Proposition 1. The curvature κ of C is given, in terms of the conformal map-
ping function Z(η), by

(4) κ = ± 1

rj|Z ′(η)|

[
1 + Re

(
ηZ ′′(η)

Z ′(η)

)]
,

where

Z ′(η) =
dZ

dη
, Z ′′(η) =

d2Z

dη2
.

Proof. Since dz/ds = ei θ(s) it follows from the chain rule that

(5) κ =
dθ

ds
=

d2z
ds2

i dz
ds

.

Since η lies on Lj, it also follows from the chain rule that

(6)
dz

ds
=
dZ

dη
(η)

dη

ds
=
dZ

dη
(η)

dη

dŝ

dŝ

ds
= Z ′(η)

dη

dŝ

dŝ

ds
.

But

(7) ds = |dz| = |Z ′(η)dη| = |Z ′(η)||dη| = |Z ′(η)|dŝ,
which implies

(8)
dŝ

ds
=

1

|Z ′(η)|
.

On use of (3) and (8) in (6), it is found that

dz

ds
= ± i ηZ ′(η)

rj|Z ′(η)|
.

Now we can write

d2z

ds2
=

∂

∂η

(
± i ηZ ′(η)

rj|Z ′(η)|

)
dη

ds
+

∂

∂η

(
± i ηZ ′(η)

rj|Z ′(η)|

)
dη

ds
,

and, hence,

(9)
d2z
ds2

dz
ds

=
∂

∂η

(
± i ηZ ′(η)

rj|Z ′(η)|

) dη
ds
dz
ds

+
∂

∂η

(
± i ηZ ′(η)

rj|Z ′(η)|

) dη
ds
dz
ds

.
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But, from (6),

(10)
dη
ds
dz
ds

=
1

Z ′(η)
,

dη
ds
dz
ds

= − rj
2

η2Z ′(η)
,

where, to derive the second equation, we have used the fact that η = rj
2/η on Lj.

A direct calculation gives the results

∂

∂η

(
± i ηZ ′(η)

rj|Z ′(η)|

)
= ±

(
iZ ′(η)

rj|Z ′(η)|
+

i ηZ ′′(η)

2rj|Z ′(η)|

)
,

∂

∂η

(
± i ηZ ′(η)

rj|Z ′(η)|

)
= ±

(
i ηZ ′(η)Z ′′(η)

2rj|Z ′(η)|Z ′(η)

)
.

(11)

Finally, substitution of (10) and (11) into (9) produces the result (4).

Proposition 2. The quantity dκ/ds is given, in terms of the conformal mapping
function Z(η), by

(12)
dκ

ds
= −Im[η2{Z(η), η}]

rj2|Z ′(η)|2
,

where

{Z(η), η} ≡ Z ′′′(η)

Z ′(η)
− 3

2

(
Z ′′(η)

Z ′(η)

)2

denotes the Schwarzian derivative.

Proof. It is convenient to write

(13)
dκ

ds
=
∂κ

dη

dη

ds
+
∂κ

∂η

dη

ds
.

A direct calculation based on (4) leads to

(14)
∂κ

∂η
= ±

(
η

2rj|Z ′(η)|
{Z(η), η} − η|Z ′′(η)|2

4rj|Z ′(η)|3

)
,

and, since κ is real, ∂κ/∂η is given by the complex conjugate of this expression.
It also follows, from (6), that

(15)
dη

ds
= ± i η

rj|Z ′(η)|
,

dη

ds
= ∓ i η

rj|Z ′(η)|
.

Substitution of (14) and (15) into (13) gives the required result (12).

The result of Proposition 2 — that the rate of change of the curvature is con-
nected to the Schwarzian derivative — is not new and a similar result is discussed
in Beardon [5] (see also Needham [30]).

We now define the function

(16) T (ζ) ≡ η2{Z(η), η},
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where we now consider the function on the right hand side as a function of ζ.
This function plays an important role in what follows. Since the image, under
Z(η), of every portion of each arc Lj for j = 0, 1, . . . ,M is a circular arc, or a
straight line segment, then dκ/ds = 0 on all the image curves. It follows, from
Proposition 2, that for the particular case of conformal mappings to polycircular
arc domains of interest, here we have

(17) η2{Z(η), η} = η2{Z(η), η} on Lj for j = 0, 1, . . . ,M.

Equivalently,

(18) T (ζ) = T (ζ) on Cj for j = 0, 1, . . . ,M.

The relations (18) will prove crucial in Section 7 for deriving the differential
equation satisfied by the conformal mapping we seek.

The above derivation of conditions (17) has been geometrical in nature and relied
on consideration of curvature and its relationship to the Schwarzian derivative.
There is an alternative, purely algebraic method to derive the same result (17)
and, for completeness, this is outlined in Appendix A.

To proceed further, we now introduce a special function called the Schottky-
Klein prime function [3, 26]. By employing this function it is possible to obtain
a convenient formula for η(ζ) while the functional form of T (ζ) can also be
derived up to a finite set of accessory parameters.

5. The Schottky-Klein prime function

This section gives a brief introduction to the Schottky-Klein prime function. We
first define M Möbius maps φj, j = 1, . . . ,M , corresponding to the conjugation
map for points on the circle Cj. That is, if Cj is determined by the equation

|ζ − δj|2 = (ζ − δj)(ζ − δj) = qj
2,

then

ζ = δj +
qj

2

ζ − δj
,

so that

(19) φj(ζ) ≡ δj +
qj

2

ζ − δj
.

If ζ is a point on Cj then its complex conjugate is given by ζ = φj(ζ).

Next, introduce the Möbius maps

(20) θj(ζ) ≡ φj(ζ
−1) = δj +

qj
2ζ

1− δjζ
.

Let C ′j be the circle obtained by reflection of the circle Cj in the unit circle |ζ| = 1

(i.e. the circle obtained by the transformation ζ 7→ ζ
−1

).
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Figure 3. Schematic illustrating the circles Cj and C ′j, and the
Möbius maps θj(ζ), in a triply connected case M = 2.

It can be easily verified that the image of the circle C ′j under the transformation θj
is the circle Cj. Thus, θj identifies circle C ′j with circle Cj. Since the M circles
C1, . . . , CM are non-overlapping, so are the M circles C ′1, . . . , C

′
M . The classical

Schottky group Θ is defined to be the infinite free group of mappings generated
by compositions of the M basic Möbius maps θj, j = 1, . . . ,M , and their inverses
θ−1
j , j = 1, . . . ,M , and including the identity map.

Consider the (generally unbounded) region of the plane exterior to the 2M circles
Cj, C

′
j, j = 1, . . . ,M . Let this region be called F . F is known as the fundamental

region associated with the Schottky group generated by the Möbius maps θj,
j = 1, . . . ,M , and their inverses. This terminology is justified because the entire
plane (excluding the limit points) is tessellated with copies of this fundamental
region obtained by mapping F by the elements of the Schottky group. This
fundamental region can be understood as having two “halves” — the half that
is inside the unit circle but exterior to the circles Cj is the domain Dζ , the other
half is the region outside the unit circle and exterior to the circles C ′j. This other
half (or copy of Dζ) is obtained by an (antiholomorphic) reflection of Dζ in the
unit circle C0. These two halves of F , one just a reflection through the unit
circle of the other, can be viewed as a model of the two “sides” of a compact
(symmetric) Riemann surface associated with Dζ known as its Schottky double.

Any compact Riemann surface of genus M also possesses exactly M holomorphic
differentials [26] which will be denoted by dvj(ζ), j = 1, . . . ,M . The functions
vj(ζ), j = 1, . . . ,M , are the integrals of the first kind ; these functions are an-
alytic, but not single-valued, everywhere in F . We normalize the holomorphic
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differentials so that ∮
ak

dvj = δjk,

∮
bk

dvj = τjk,

where τjk is the so-called period matrix.

The following theorem is established in Hejhal [26]:

Theorem. There is a unique function X(ζ, γ) defined by the properties:

(i) X(ζ, γ) is analytic everywhere in F × F .
(ii) For γ ∈ F , X(ζ, γ) has a second order zero at γ and at all of its equivalent

points.
(iii) For γ ∈ F ,

(21) lim
ζ→γ

X(ζ, γ)

(ζ − γ)2
= 1.

(iv) For j = 1, . . . ,M ,

(22) X(θj(ζ), γ) = exp
(
− 2π i(2(vj(ζ)− vj(γ)) + τjj)

)dθj(ζ)

dζ
X(ζ, γ).

The Schottky-Klein prime function is the square root of this function, i.e.

ω(ζ, γ) = (X(ζ, γ))1/2,

where the branch of the square root is chosen so that ω(ζ, γ) behaves like (ζ−γ)
as ζ → γ. It is important to observe that ω(ζ, γ) has a simple zero at ζ = γ, and
at all images of γ under the action of the group Θ.

Concerning the matter of evaluating the Schottky-Klein prime function, Baker [3]
gives an infinite product formula for it, but precise convergence criteria for this
product are not known. Even if it does converge, the evaluation of this infinite
product becomes prohibitively slow as the connectivity of the domain increases.
Crowdy & Marshall [15] have recently proposed a novel numerical scheme for the
computation of the Schottky-Klein prime function which is not reliant on a sum
or product over the Schottky group. This renders it much more efficient from
a numerical standpoint. Moreover, freely downloadable software based on this
algorithm have been made available [11].

6. A representation for η(ζ)

It is necessary to find an explicit representation of the intermediate mapping
η(ζ) from Dζ to the circular slit domain Dη. This has been presented in [7, 14]
and is given by

(23) η(ζ) =
ω(ζ, α)

|α|ω(ζ, α−1)
,
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where ω(·, ·) is the Schottky-Klein prime function associated with Dζ . The pa-
rameter α is the point in Dζ which maps to η = 0 and can be chosen arbi-

trarily. Once α has been chosen for a given Dζ , then the parameters γ
(j)
1 , γ

(j)
2 ,

j = 1, . . . ,M , are determined via (23); that is, these parameters are purely
functions of the parameters α and of qj, δj, j = 1, . . . ,M .

7. Properties of T (ζ)

By the well-known chain rule for Schwarzian derivatives [30] it follows that

(24)

(
dη

dζ

)2

{Z(η), η} = {Z(ζ), ζ} − {η(ζ), ζ)}.

A proof of this result is a straightforward calculus exercise. In terms of T (ζ), (24)
can be written as

(25) {Z(ζ), ζ} =
1

η(ζ)2

(
dη

dζ

)2

T (ζ) + {η(ζ), ζ}.

We now examine the singularities of T (ζ). By making use of the fact that, near

any prevertex a
(j)
k , the derivative of the conformal mapping must have the local

behaviour
dZ
dζ

=
(
ζ − a(j)

k

)β(j)
k

h(ζ)

for some parameter β
(j)
k , and a locally analytic function h(ζ) that is non-vanishing

at a
(j)
k , it can be shown that, at each of the preimages a

(j)
k , k = 1, . . . , nj,

j = 0, 1, . . . ,M , the quantity {Z(ζ), ζ} must have a second order pole. This
same local argument is relevant even in the simply connected case [31, 1]. It

then follows from (25) that T (ζ) has second order poles at a
(j)
k , k = 1, . . . , nj,

j = 0, 1, . . . ,M . Since {Z(ζ), ζ} is analytic at the points γ
(j)
1 , γ

(j)
2 , j = 1, . . . ,M ,

while {η(ζ), ζ} has second order poles at these points, it also follows from (25)

that T (ζ) must have fourth order poles at γ
(j)
1 , γ

(j)
2 , j = 1, . . . ,M , because these

are the simple zeros of dη/dζ. The strengths of these fourth order poles of T (ζ)
must be chosen so that there are no singularities of the right hand side of (25)

at the points γ
(j)
1 , γ

(j)
2 , j = 1, . . . ,M .

We now return to the conditions (18) on T (ζ) derived earlier. In terms of the
Möbius mappings just introduced, (18) implies that

T (ζ−1) = T (ζ) on C0,

T (φj(ζ)) = T (ζ) on Cj for j = 1, . . . ,M.
(26)

But these functional relations can be analytically continued off the respective
circles implying that

T (ζ−1) = T (φj(ζ)), j = 1, . . . ,M.
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It then follows that

(27) T (φj(ζ
−1)) = T (θj(ζ)) = T (ζ), T (θ−1

j (ζ)) = T (ζ),

or, since the Möbius maps θj(ζ), j = 1, . . . ,M , and their inverses generate the
Schottky group Θ, T (ζ) is invariant under the action of the Schottky group.

The functional relations (27) can be used to argue that T (ζ) is analytic in the
fundamental region F associated with the Schottky group except for a finite set
of poles on its boundary. A function that is invariant with respect to the action
of a Schottky group, and is meromorphic in a fundamental region associated
with the group, is known as an automorphic function [24, 4]. The right hand
side of (25) therefore has a unique analytic continuation into Dζ and (25) is the
ordinary differential equation satisfied by Z(ζ).

Combining all the information obtained so far, the function T (ζ) must have the
following properties:

(a) It must be an automorphic function with respect to the group Θ;
(b) it must satisfy the functional relation T (ζ−1) = T (ζ);

(c) it must have second order poles at the prevertices a
(j)
k and fourth order poles

at the points γ
(j)
1 , γ

(j)
2 , j = 1, . . . ,M .

From the general theory of automorphic functions [24] it is known that there
are a variety of ways to represent an automorphic function. In a quite separate
application, Crowdy & Marshall [12, 16] have explored the effectiveness of several
of these representations in the context of constructing the conformal mappings
to so-called multiply connected quadrature domains. Such mappings are also
automorphic functions under the action of a (finitely generated) Schottky group
of precisely the kind considered here. The important point is that it is possible
to write down a representation of the function T (ζ) appearing in (25) up to a
finite set of accessory parameters. These parameters must be found numerically
as part of the construction of the mapping function.

Each choice of representation of T (ζ) is likely to have advantages and disad-
vantages in terms of its numerical implementation (including the solution of the
parameter problem), but such numerical matters will be left as a matter for fu-
ture investigation. In Section 9, however, we will make a particular choice of a
concrete representation of T (ζ) in order to treat some explicit examples.

8. The parameter problem

It is important to check the consistency of the parameter problem. First, let
us count the number of parameters needed to determine a given target domain.
Any polycircular region with a total of N sides is characterized locally by 3N
real parameters: the centre and radius of each circular arc must be specified.
On the other hand, owing to a well-known invariance property of the Schwarzian
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derivative [31], the ordinary differential equation (25) for Z(ζ) is invariant under
transformations of the form

Z(ζ) 7→ aZ(ζ) + b

cZ(ζ) + d
, a, b, c, d ∈ C, ad− bc = 1.

This invariance corresponds to 6 real degrees of freedom and these are associated
with the 6 real constants that must be specified to uniquely solve the third order
ordinary differential equation (25). It follows that (25) should depend on 3N −6
specifiable parameters. We now verify this.

First, from the multiply connected generalization of the Riemann Mapping The-
orem [25], the conformal mapping will depend on 3M −3 real conformal moduli.
These are the 3M parameters qj, δj, j = 1, . . . ,M , minus 3 degrees of freedom
associated with the Riemann Mapping Theorem. The choice of α in the inter-
mediate mapping η(ζ) can be made arbitrarily, provided that it is strictly inside
Dζ , so it is excluded from the parameter count. Moreover, once α is chosen, then
knowledge of the parameters qj, δj, j = 1, . . . ,M , immediately determines the

values of γ
(j)
1 , γ

(j)
2 , j = 1, . . . ,M . For this reason, the parameter α and the set

γ
(j)
1 , γ

(j)
2 , j = 1, . . . ,M , are not included in the parameter count.

The function T (ζ) has second order poles at the N prevertices to be deter-
mined. This represents only N real degrees of freedom because these poles are
necessarily on the boundary circles of Dζ so only their position on these circles
is unknown. Counting multiplicities, and including the fourth order poles at

γ
(j)
1 , γ

(j)
2 , j = 1, . . . ,M , T (ζ) has a total of 2N + 8M poles in the fundamental

region F where we adopt the usual convention of only counting boundary sin-
gularities once. Since it is an automorphic function invariant under the action
of a finitely generated Schottky group, by Abel’s Theorem [3], T (ζ) must also
have 2N + 8M (generally complex) zeros in the fundamental region. However,
this represents only 2N + 8M real degrees of freedom because the functional
relation (b) means that if T (ζ) has a zero at b strictly inside the fundamental
region F , then it necessarily has another zero at 1/b. Furthermore, given a func-
tion T (ζ) with specified poles and zeros it can be multiplied by a real constant
and will also satisfy all the requirements (a)–(c). This represents a further real
degree of freedom. In summary, T (ζ) depends on a total of

(28) (3M − 3) +N + (2N + 8M) + 1 = 11M + 3N − 2

real parameters.

There are, however, constraints on these parameters. First, note from (25) that
T (ζ) must also have a second order zero at ζ = α in order to remove a pole
arising from the appearance of η(ζ)2 in the denominator of the multiplier of
T (ζ). This represents 4 real constraints. The second order poles of the right

hand side of (25) at γ
(j)
1 , γ

(j)
2 , j = 1, . . . ,M , must be removable, leading to 4M

real constraints. In the general case, the M complex constraints on the poles and
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zeros of an automorphic function (from Abel’s Theorem [3]) give a total of 2M
real constraints, but owing to the fact that, in the present case, all poles are on
the boundary circles and that any zeros that are strictly inside the fundamental
region come in pairs (b, 1/b), these can be shown to amount to just M real
constraints. Finally, a further 6M constraints follow from considering the fact
that because the mapping Z(ζ) is single-valued around the circle Cj, then on
any closed curve inside Dζ that encloses (and is close to) Cj we must have

Z(ζ) =
∞∑
k=1

ak
(ζ − δj)k

+
∞∑
k=0

bk(ζ − δj)k,

for some set of coefficients ak, bk. This means that Z ′′′(ζ) has a Laurent series
representation of the form

Z ′′′(ζ) = −
∞∑
k=1

k(k + 1)(k + 2)ak
(ζ − δj)k+3

+
∞∑
k=0

k(k − 1)(k − 2)bk(ζ − δj)k−3.

It follows that∮
Cj

(ζ − δj)kZ ′′′(ζ) dζ = 0, k = 0, 1, 2, j = 1, . . . ,M,

which, from (25), can be seen to constitute 6M real constraints on T (ζ). In total
we find

(29) 4 + 4M +M + 6M = 11M + 4

real constraints. Subtracting (29) from (28) we conclude that equation (25)
depends on

(11M + 3N − 2)− (11M + 4) = 3N − 6

free parameters.

In summary, it has been confirmed that the number of accessory parameters
in (25) is as expected.

9. Examples

For a given target domain, it is generally necessary to solve numerically for the
accessory parameters appearing in (25). To do so we need to write T (ζ) explicitly
by making some choice of its representation and then solving for the finite set
of parameters appearing in this representation. As already mentioned, there are
a variety of ways to represent automorphic functions with respect to a Schottky
group (see Baker [3], Beardon [4], Crowdy & Marshall [12, 16]). Here, in order
to simply corroborate the preceding theoretical formulation without delving into
numerical issues arising from the solution of the parameter problem, we now
apply it to some multiply connected polycircular arc mappings which happen to
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be known explicitly. The idea is that if Z(ζ) is known then we can compute the
quantity

(30)
η(ζ)2 ({Z(ζ), ζ} − {η(ζ), ζ)})(

dη
dζ

)2

directly. We can then demonstrate that this quantity is identically equal to an
automorphic function T (ζ) having all the requisite properties and for which we
pose an alternative representation.

For present purposes, and following Baker [3] and Crowdy & Marshall [12], we
elect here to represent T (ζ) as a ratio of products of Schottky-Klein prime func-
tions. All evaluations of the prime function in this section have been performed
using the numerical codes prepared by Crowdy & Green [11].

9.1. An example of a doubly connected domain. Crowdy & Fokas [10]
did not make use of an intermediate circular slit map in their derivation of
polycircular arc mappings for doubly connected domains (it is not necessary in
that case). It is therefore reassuring to check that the foregoing theory, which
does use the intermediate slit mapping, applies to this case. As shown in an
appendix in [10] the conformal mapping from ρ < |ζ| < 1 to the domain Dz

comprising the unit disc with a symmetric slit along the real axis is

Z(ζ) =
P (−ζ, ρ)− P (ζ, ρ)

P (−ζ, ρ) + P (ζ, ρ)
,

where

P (ζ, ρ) ≡ (1− ζ)
∞∏
j=1

(
1− ρ2jζ

) (
1− ρ2jζ−1

)
.

The function P (ζ, ρ) is proportional to the Schottky-Klein prime function for the
annulus. The circular slit mapping is given in this case by

η(ζ) =
|α|P (ζα−1, ρ)

P (ζα, ρ)
.

Taking a real value of α implies that the circular slit will be up-down symmetric
about the real axis. The preimage domain Dζ and the target domain Dz are
also up-down symmetric. This means that the distribution of zeros of T (ζ) is
expected to share this up-down symmetry.

It has been verified that a representation for T (ζ) is
(31)

T (ζ) =
RP 2(ζα−1, ρ)P 2(ζα, ρ)

∏4
j=1 P (ζa−1

j , ρ)
∏4

j=1 P (ζaj
−1, ρ)

P 2(ζρ−1, ρ)P 2(−ζρ−1, ρ)P 2(ζγ−1, ρ)P 2(ζγ−1, ρ)P 2(ζγ, ρ)P 2(ζγ, ρ)
,

where R is a constant, {aj}4j=1 are simple zeros and γ is the preimage in Dζ of
the end of the circular slit in the upper half-plane of Dη (the preimage of the end
of the slit in the lower half-plane is at γ). For a given value of ρ the value of γ
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can be found numerically by using Newton’s method to find the zero of dη/dζ
on |ζ| = ρ. The zeros of (30) were also found numerically. Then the zeros of the
function in (31) can be found. After determining these zeros, an arbitrary value
of ζ is picked and equation (31) evaluated at this point to provide a formula for
the only remaining unknown parameter R. It was then verified that functional
relation (31) holds identically for any other choice of ζ in the fundamental region.
This provides a check of our general theoretical formulation.

Note that if the conformal mapping had not been known a priori the strategy
would have been to pose an ansatz for T (ζ) of the functional form (31) and use
geometrical information on the target domain, as well as the other constraints
on parameters discussed in Section 8, to solve for the parameters in (31).

Another check on the formulation comes from noting that the conformal mapping
Z(ζ) : Dζ → Dz should not depend on the choice of α used in the circular slit
mapping to Dη. To verify this, define

S(ζ, α) ≡ {η(ζ), ζ}+
η(ζ)2T (ζ)(

dη
dζ

)2 .

Since S(ζ, α) = {Z(ζ), ζ} then given any two different choices of α, say α1 and
α2, then it should be expected that

S(ζ, α1)

S(ζ, α2)
≡ 1.

This identity was confirmed numerically (by evaluating at arbitrarily chosen
values of ζ) for the choices α1 = −

√
0.2 and α2 = 0.5. The parameters in the

case ρ = 0.2 with α = −
√

0.2 (left table) and α = 0.5 (right table) are shown in
Table 1 (correct to 6 decimal places).

a1 +0.688977 + 0.724783 i
a2 −0.758396 + 0.651794 i
a3 +0.061944 + 0.190165 i
a4 −0.178546 + 0.090119 i
R −71.207654 + 0.000000 i

a1 +0.754713 + 0.656055 i
a2 −0.688141 + 0.725577 i
a3 +0.176622 + 0.093834 i
a4 −0.070189 + 0.187280 i
R −102.917735 + 0.000000 i

Table 1.

Finally, local arguments imply that near one of the prevertices, say ζ = ρ,

dZ
dζ

= (ζ − ρ)βh(ζ),

where h(ζ) is analytic and non-vanishing at ρ. The turning angle corresponding
to prevertex ζ = ρ is π implying that β = 1. From this, it is a simple exercise to
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show that, near ζ = ρ, the Schwarzian derivative must have the local behaviour

{Z(ζ), ζ} = −3

2

1

(ζ − ρ)2
+ analytic function.

As a final check on the formulation, we used the alternative representation of
{Z(ζ), ζ} as given by the right hand side of (25) together with the expression (31)
for T (ζ) and confirmed that the second pole at ζ = ρ indeed has strength −3/2.

9.2. An example of a triply connected domain. Consider the lens-type
region Dz shown in Figure 4 bounded by two circular arcs of the same radius,
intersecting at ±1, and two symmetrical slits along the real axis. The conformal
mapping between the triply connected circular domain Dζ and Dz is given by
the following sequence of conformal mappings:

(32) g(ζ) = −ω(ζ,−1)

ω(ζ, 1)
, φ(g) = gβ, η(φ) =

φ− 1

φ+ 1
.

This sequence of mappings is illustrated in Figure 4. The parameter β is related
to the angle at the two corners of the lens-type region. The composed mapping
Z : Dζ → Dz is

Z(ζ) = η(φ(g(ζ))).

g

φ

β π/2
β π/2η

Figure 4. Sequence of conformal mappings (32) for the construc-
tion of an analytical expression for a triply connected lens domain.
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By considerations similar to those in Section 9.1 we have verified that one rep-
resentation for T (ζ) is

T (ζ) = R
Tn(ζ)

Td(ζ)

where R is a real constant, while Tn(ζ) and Td(ζ) are defined as follows:

Tn(ζ) = ω2(ζ, α)ω2(ζ, α−1)
2∏
j=1

ω(ζ, aj)ω(ζ, a−1
j )

×
5∏
j=3

ω(ζ, aj)ω(ζ, a−1
j )ω(ζ, aj)ω(ζ, aj

−1)
9∏
j=6

ω(ζ, aj)ω(ζ, aj),

and

Td(ζ) =
2∏
j=1

ω2(ζ, γj)ω
2(ζ, γj

−1)
2∏
j=1

ω2(ζ, γj)ω
2(ζ, γ−1

j )
6∏
j=1

ω2(ζ, bj).

γ1, γ2 are the preimages in Dζ of the upper ends of both the circular slits in Dη.
The parameters a1, . . . , a9 are simple zeros which were determined numerically
by solving for the zeros of (30). For the choices of β considered here it is found
that two of the zeros, labeled a1 and a2, are purely real, three other zeros, labeled
a3, a4, a5, lie strictly inside the fundamental domain, while the zeros a6, a7, a8, a9

lie on either C1 or C2. We also have b1 = δ + q = −b2, b3 = −δ + q = −b4, and
b5 = 1 = −b6.
For δ=0.5, q = 0.1, and α = 0.2 we find the following tables of parameter values
for β = 0.25 (left table) and β = 0.5 (right table):

a1 +0.802802 + 0.000000 i
a2 −0.806078 + 0.000000 i
a3 −0.001643 + 0.145736 i
a4 −0.664638 + 0.479002 i
a5 +0.647050 + 0.470597 i
a6 −0.422109 + 0.062713 i
a7 −0.562922 + 0.077723 i
a8 +0.552597 + 0.085051 i
a9 +0.416578 + 0.055143 i
R −0.115884 + 0.000000 i

a1 +0.812604 + 0.000000 i
a2 −0.815933 + 0.000000 i
a3 −0.001570 + 0.157708 i
a4 −0.718085 + 0.535868 i
a5 +0.691757 + 0.521101 i
a6 −0.422136 + 0.062747 i
a7 −0.562716 + 0.077889 i
a8 +0.552265 + 0.085255 i
a9 +0.416590 + 0.055162 i
R −0.129490 + 0.000000 i

Table 2.

Numerical values are reported correct to 6 decimal places. Furthermore, for
β = 0.5, the parameters were determined for the two choices α = α1 = 0.2 and
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α = α2 = −0.75 and, by evaluating at arbitrarily chosen values of ζ, it was
verified numerically that

S(ζ, α1)

S(ζ, α2)
≡ 1,

indicating that T (ζ) is indeed independent of the choice of α.

10. Discussion

The principal result of this paper is to show that the conformal map Z(ζ) from
a circular preimage region Dζ to a given multiply connected polycircular arc
domain is a solution of the third order ordinary differential equation

(33) {Z(ζ), ζ} =
1

η(ζ)2

(
dη

dζ

)2

T (ζ) + {η(ζ), ζ},

where curly brackets denote the Schwarzian derivative. Furthermore it has been
shown that the right-hand side of (33) can be written explicitly up to a finite
set of accessory parameters that must be determined as part of the solution
(the “parameter problem”). An explicit form for η(ζ) is given by (23) in terms
of the Schottky-Klein prime function, while a functional form for T (ζ) can be
determined by using standard techniques for representing automorphic functions
invariant under the action of a classical, finitely generated Schottky group. The
numerical challenges associated with the solution of the parameter problem are
a topic for future investigation.

It is interesting to point out that, just as in the simply connected case, the
linearization of the differential equation (33) yields a second order ordinary dif-
ferential equation [1] and Z(ζ) can be expressed as a ratio of two solutions of
this equation. The resulting second order linear ordinary differential equations
can be considered as generalizations, to higher genus Riemann surfaces, of well-
known equations arising in the theory of conformal mapping to simply connected
polycircular domains such as the hypergeometric equation [31] when the domain
has just three singular points, or the Heun equation [23] when there are four
singular points.

Appendix A. Alternative derivation of (17)

In this appendix we outline a purely algebraic method to derive the result (17).
On the k-th circular arc of the j-th boundary, it follows from (1) that

(34) z −∆
(j)
k =

[Q
(j)
k ]2

z −∆
(j)
k

, j = 0, 1, . . . ,M.
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This formula defines z as a function of z on this curve; such a function is usually
dubbed the Schwarz function of the curve [17, 30]. Define

(35) S
(j)
k (z) = ∆

(j)
k +

[Q
(j)
k ]2

z −∆
(j)
k

, j = 0, 1, . . . ,M,

to be the Schwarz function of the k-th circular arc of the j-th boundary. This
function clearly has a meromorphic continuation off the curve and there is no am-
biguity in taking derivatives, with respect to z, of these local Schwarz functions.
On differentiation of (35) with respect to z, and use of (35), we can write

(36)
dS

(j)
k (z)

dz
= −S

(j)
k (z)−∆

(j)
k

z −∆
(j)
k

.

Differentiating (36) with respect to z yields

(37)
d2S

(j)
k (z)

dz2
= −

dS
(j)
k

dz
(z)

z −∆
(j)
k

+
S

(j)
k (z)−∆

(j)
k

(z −∆
(j)
k )2

= 2
S

(j)
k (z)−∆

(j)
k

(z −∆
(j)
k )2

.

A ratio of equations (36) and (37) implies that

(38)

dS
(j)
k

dz
(z)

d2S
(j)
k

dz2
(z)

= −1

2
(z −∆

(j)
k ),

so that a further differentiation of (38) with respect to z leads to

(39) − d3S
(j)
k (z)

dz3
+

3

2

(
d2S

(j)
k

dz2
(z)

)2

dS
(j)
k

dz
(z)

= 0.

It is important to notice that this third order ordinary differential equation for the
Schwarz function of the k-th circular arc of the j-th boundary does not depend
explicitly on either index j or k; thus, the local Schwarz function of every circular
arc segment of the boundary of the polycircular arc domain satisfies the same
differential equation (39). Also note that if a portion of the boundary is a straight
line segment, so that its Schwarz function is linear, then it also satisfies (39).

While the analytic relation (39) is valid off the original curve it can be evaluated
on the k-th circular arc of the j-th boundary and then we have, in terms of the
conformal mapping Z(η) from the circular slit domain Dη, the relations

(40) z = Z(η), S
(j)
k (z) = Z(η) = Z

(
rj

2

η

)
,

where η lies on Lj. On substitution of the expressions (40) into (39), after some
algebra, it can be shown that (39) reproduces condition (17).
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