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New numerical solutions to the so-called selection
problem for one and two steadily translating bubbles
in an unbounded Hele-Shaw cell are presented. Our
approach relies on conformal mapping which, for
the two-bubble problem, involves the Schottky-Klein
prime function associated with an annulus. We show
that a countably infinite number of solutions exist
for each fixed value of dimensionless surface tension,
with the bubble shapes becoming more exotic as
the solution branch number increases. Our numerical
results suggest that a single solution is selected in the
limit that surface tension vanishes, with the scaling
between the bubble velocity and surface tension being
different to the well-studied problems for a bubble or
a finger propagating in a channel geometry.

1. Introduction
A Hele-Shaw cell is a classical experimental apparatus
which sandwiches a thin layer of viscous fluid between
two parallel glass plates in such a way that the
fluid dynamics can be modelled as completely two
dimensional. From a modelling perspective, if the fluid
is assumed to be incompressible and the flow irrotational,
any mathematical solutions will be necessarily harmonic.
For this reason, flow in a Hele-Shaw cell can be used to
produce good visualizations of the streamline patterns in
potential flow fields, such as the flow around a circular
cylinder or around a body with sharp corners, because
the fluid is able to negotiate corners without separation
(Van Dyke [1]).

2017 The Author(s) Published by the Royal Society. All rights reserved.
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A particularly interesting set-up involves two immiscible fluids of differing viscosity where,
if the less viscous fluid is displacing the more viscous fluid, the interface between the two fluids
is unstable and can evolve to form one or more fingers [2]. Mathematically, Hele-Shaw models
with fluid interfaces give rise to many interesting free boundary problems which have been
well studied over the past several decades, each of which come under the general umbrella
of Laplacian growth processes. Many exact and numerical solutions have been found to these
problems, in both steady and unsteady cases, which is particularly remarkable given the highly
nonlinear nature of these problems (see, e.g. Gustafsson & Vasil’ev [3]).

We are interested in steadily propagating bubbles in a Hele-Shaw cell, a topic which dates
back to Taylor & Saffman [4]. We will focus on the theoretical situation where the Hele-Shaw cell
is unbounded, therefore completely removing the effect of any side walls on any of the bubbles
and flow field variables. The standard zero-surface-tension model for Hele-Shaw flow predicts
that any number of bubbles can translate steadily with a continuum of possible bubble speeds U
for a given background fluid speed V in the same direction (where U>V). In the case of a single
bubble in an unbounded Hele-Shaw cell, it is relatively simple to show that the bubbles are elliptic
in shape with aspect ratio (U − V)/V. For multiple bubbles, exact solutions have been constructed
by Crowdy [5] by exploiting the function theory of the Schottky–Klein prime function [6,7], an
approach which is crucial for solving problems like this with arbitrary finite connectivity. As with
the single bubble problem, solutions exist for a continuum of bubble speeds U.

There is a similar history for zero-surface-tension problems in a channel geometry (where the
flow is confined to a channel whose parallel walls are perpendicular to the Hele-Shaw plates).
Here, in the case of a single bubble in a Hele-Shaw channel which is reflectionally symmetric
about the channel centreline, Taylor & Saffman [4] appealed to hodograph methods in simply
connected domains to exactly determine the shape of the propagating bubble. Tanveer [8] later
found a wider class of possible bubble shapes in this channel geometry by relaxing the centreline
symmetry constraint thereby introducing a doubly connected flow domain and writing the
solutions in terms of elliptic functions. More recently, Green & Vasconcelos [9] found all possible
bubble shapes for a steadily translating assembly of finitely many channel bubbles, without any
symmetry assumptions, in which the solutions of Taylor & Saffman [4] and Tanveer [8] are all
special cases (the results in [9] were further generalized in [10] to hold for any number of bubbles
and fingers). While we are concerned here with steady motion of bubbles, recent time-dependent
studies for a single bubble in the zero-surface-tension context are also worth mentioning [11–13].

In this paper, we shall be analysing the effect of adding surface tension to the bubble
boundaries, thereby rendering the physical model of the flow more precise (we shall denote the
dimensionless surface tension by B). The addition of surface tension adds a layer of mathematical
richness to the problem in that it allows for a countably infinite family of solutions, each with
a distinct speed U, instead of a continuum of possible bubble speeds. We shall explore this
solution behaviour for the case of one and two bubbles, covering the simply connected and
doubly connected cases (the precise two-bubble configuration we are considering is shown later
in figure 6). We are interested in using a combination of complex variable techniques, conforming
mappings and numerical methods to determine bubble shapes for each of the families of solutions
and to predict which of the continuum of solutions is selected in the limit that B → 0. Our work
is complementary to that of Combescot & Dombre [14] and Tanveer [8,15,16] who considered the
selection problem for a single bubble in a channel geometry using both numerical method and
exponential asymptotics. It is worth noting that these authors derive the scaling U/V ∼ 2 − kB2/3,
as B → 0, where k is a constant that depends on the solution branch number. Further, as mentioned
by Tanveer [16], the limits of vanishing bubble area and vanishing surface tension do not commute
in the channel geometry, so this scaling does not necessarily apply in the unbounded case (that
we consider here).

Our framework for bubble selection is analogous to the well-studied problem of a steadily
travelling finger (a Saffman–Taylor finger) in a Hele-Shaw channel, which also gives rise to
exact solutions for the zero-surface-tension case with a finger speed U left as a free parameter
(Saffman & Taylor [2]). Numerical approaches [17–19] and asymptotic analysis [20–24] have
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been applied to the selection problem with surface tension which also leads to a countably
infinite number of finger solutions for non-zero surface tension and the selection of U/V = 2 in
the limit that surface tension vanishes. Other selection mechanisms, such as anisotropic surface
tension [25], kinetic undercooling [26–28] or even selection without additional physics [29], have
been explored in some detail and also predict that the U/V = 2 solution is the physically relevant
case, as reported in the original experiments by experiments Saffman & Taylor [2]. Note that all
these cases involve simply connected geometries.

The main purpose of this work is to present new numerical solutions to the selection problems
for a single steadily translating bubble and for a pair of up-down symmetric steadily translating
bubbles in an unbounded Hele-Shaw cell. The two-bubble problem involves a dimensionless
separation distance between the bubbles, so that in the limit of infinitely large separation distance,
the two-bubble problem reduces to the simpler single bubble case. For both the one-bubble
and two-bubble problems, we compute numerical solutions for a number of solution branches,
demonstrating that the shapes of the bubbles become increasingly exotic as the branch number
increases. Further, our numerical results suggest that U/V ∼ 2 − kB2 as B → 0, confirming the
selection of U/V = 2 but providing a different surface tension scaling to the channel case.

2. One bubble
We begin with the treatment of one steadily translating bubble in an unbounded Hele-Shaw cell.
The formulation of this problem will pave the way to a generalization to include two bubbles
which we will consider in the following section.

(a) Problem formulation
Consider a single bubble in steady motion in an unbounded Hele-Shaw cell. Let D be the
unbounded planar region, in the z = x + iy plane, containing incompressible fluid exterior to a
single bubble of finite area. We assume the bubble is reflectionally symmetric about the real axis
y = 0 (on physical grounds, it makes no sense to consider asymmetric bubbles in an unbounded
Hele-Shaw cell). Denote the bubble by D0 and its boundary by ∂D0. We will assume that the
bubble is moving with constant speed U in the x-direction, and that the fluid velocity far away
from the bubble is in the x-direction with constant speed V. The velocity field u is derived from
a velocity potential φ so that u = ∇φ. As φ is proportional to the fluid pressure in the Hele-
Shaw system, it must be the case that φ is single-valued everywhere in D. Also let ψ denote
the streamfunction for this flow. The governing equation to be solved, owing to incompressibility
∇ · u = 0, is Laplace’s equation for φ, which must be solved in the domain D. The following must
therefore hold [3]

∇2φ = 0, z ∈ D; (2.1)

φ = − b2

12μ
σκ + φ0, z ∈ ∂D0; (2.2)

vn = ∂φ

∂n
, z ∈ ∂D0; (2.3)

φ ∼ Vx, |z| → ∞. (2.4)

Here, b is the gap width between plates, μ is the fluid viscosity, σ is the surface tension of the
bubble, κ is the curvature of the bubble boundary and φ0 is a real constant. Moving to a frame of
reference co-travelling with the bubble at speed U, the above will change to the following (where
the tilde notation denotes quantities in this co-travelling reference frame)

∇2φ̃ = 0, z ∈ D; (2.5)

φ̃ = − b2

12μ
σκ + φ0 − Ux, z ∈ ∂D0; (2.6)
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ψ̃ = 0, z ∈ ∂D0; (2.7)

φ̃ ∼ (V − U)x, |z| → ∞. (2.8)

The third of these equations comes about because, in this co-travelling frame, the bubble
boundary is a streamline, and without loss of generality, we may fix the value of the
streamfunction to be zero here. Let us scale lengths with respect to L and speeds with respect
to V (say). Then we have the following dimensionless, hatted quantities:

x̂ = x
L

, Û = U
V

, φ̂ = φ̃

VL
, ψ̂ = ψ̃

VL
, κ̂ = Lκ . (2.9)

We then have the following non-dimensionalized problem:

∇2φ̂ = 0, ẑ ∈ D; (2.10)

φ̂ = − b2

12μVL2 σ κ̂ + φ̂0 − Ûx̂, ẑ ∈ ∂D0; (2.11)

ψ̂ = 0, ẑ ∈ ∂D0; (2.12)

φ̂ ∼ (1 − Û)x̂, |ẑ| → ∞. (2.13)

We note from the above that we may define a non-dimensional surface tension parameter through

B = b2σ

12μVL2 . (2.14)

We assume that for a convex bubble, the curvature of the bubble boundary κ will always be strictly
positive. We choose L2 to be the bubble area Ã divided by π . Then the dimensionless area

Â = Ã
L2 = π (2.15)

(say) so that

L =
√

Ã
π

and B = πb2σ

12μVÃ
. (2.16)

We will now drop the hatted notation and assume we are working with dimensionless variables
henceforth. We thus have the following problem to solve, for the velocity potential φ and the
streamfunction ψ , pertaining to a single bubble in an unbounded Hele-Shaw cell in a frame of
reference co-travelling with the bubble

∇2φ = 0, z ∈ D; (2.17)

φ + Ux = Bκ + φ0, z ∈ ∂D0; (2.18)

ψ = 0, z ∈ ∂D0; (2.19)

φ ∼ (1 − U)x, |z| → ∞. (2.20)

In the above, φ0 is a real constant. It makes sense, thus, to solve for a complex potential function
w(z) = φ + iψ for this flow whose real and imaginary parts are respectively the velocity potential
φ and the streamfunction ψ . Function w must be a single-valued analytic function everywhere in
D. A natural way of doing this is to pull-back to a simpler parametric ζ -plane and proceed to find
the composition W(ζ ) = w(z(ζ )), where z(ζ ) is a conformal map to the fluid region D exterior to the
bubble, and must also be determined. Label the pre-image region of D in the ζ -plane by Dζ which
may be taken to be the unit ζ -disc without loss of generality. Then let C0 label the unit ζ -circle,
|ζ | = 1. The Riemann mapping theorem guarantees the existence of a conformal mapping z(ζ )
between the two simply connected regions Dζ and D. We will now re-write the problem (2.17)–
(2.20) in terms of the complex functions z(ζ ) and W(ζ ), or equivalently, in terms of the complex
variable ζ .
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Figure 1. Schematic of the pre-image parametric ζ -plane being the interior of the unit circle C0 (a), and the target image
domain in the z-plane exterior to the bubble (b).

In the frame of reference co-travelling with the bubble, the complex potential w(z) is related
to the complex potential w̃(z) in the laboratory frame via w(z) = w̃(z) − Uz. It follows that w is a
single-valued analytic function everywhere in D except for a simple pole singularity at infinity.
Equivalently, W(ζ ) is a single-valued analytic function everywhere in Dζ except for a simple pole
singularity at the point ζ = β ∈ Dζ (say) mapping to infinity. Correspondingly, the conformal map
z(ζ ) must have a simple pole also at ζ = β but is otherwise analytic and single-valued. This means
that locally, we must have

z(ζ ) ∼ a
ζ − β

, ζ → β, (2.21)

for some constant a, which can be taken to be real; this leaves two remaining real degrees of
freedom associated with the Riemann mapping theorem which allows us to choose β = 0 (say).
We will construct z(ζ ) such that C0 maps to the bubble boundary ∂D0. Figure 1 shows a schematic.

It is a trivial observation that if W(ζ ) =Φ + iΨ is a single-valued analytic function of ζ , then
both its real and imaginary parts Φ and Ψ are necessarily harmonic, as required. (2.18) becomes

Re[W(ζ ) + Uz(ζ )] = Bκ + constant, ζ ∈ C0, (2.22)

where an expression for the signed curvature can be given in terms of the conformal map z(ζ )
through the formula

κ = ±
(

1 + Re[ζz′′(ζ )/z′(ζ )]
|z′(ζ )|

)
. (2.23)

We will adopt the following sign convention. We wish to measure the curvature of the bubble
boundary from a point lying within the interior of the bubble. As our conformal map reverses the
orientation of a tangent vector in the ζ -plane, we thus require a minus sign in (2.23), so that κ > 0
when the tangent vector, directed out of the domain, rotates anti-clockwise. (2.19) is simply

Im[W(ζ )] = 0, ζ ∈ C0. (2.24)

(2.20) transforms to

W(ζ ) ∼ (1 − U)z(ζ ), ζ → β, (2.25)

which, in the light of (2.21) and the choice β = 0, is

W(ζ ) ∼ (1 − U)a
ζ

, ζ → 0. (2.26)
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(b) Zero-surface-tension solutions
Let W0(ζ ) and z0(ζ ) be the complex potential and conformal map we seek for a zero-surface-
tension bubble propagating an unbounded Hele-Shaw cell. The solutions for W0(ζ ) and z0(ζ ) are
elliptic bubbles with aspect ratio (1 − 2/U). These solutions have been determined by Taylor &
Saffman [4] and Crowdy [5] as special cases of more complicated problems. Taylor & Saffman [4]
use a hodograph mapping to write down exact solutions in the case of a single bubble moving
steadily in a Hele-Shaw channel and then note the elliptic solution z0(ζ ) in the limit that the bubble
area vanishes. On the other hand, Crowdy [5] considered multiple zero-surface-tension bubbles
in an unbounded Hele-Shaw cell. His exact solutions are derived in terms of conformal mappings
to multiply connected slit domains (presented in Crowdy & Marshall [30]). Using these results to
enforce the dynamic boundary condition (2.22), where the factor U appears, results in this specific
aspect ratio of these elliptical bubbles, namely (1 − 2/U). The explicit forms of W0(ζ ) and z0(ζ ) are

W0(ζ ) = (1 − U)a
(
ζ + 1

ζ

)
(2.27)

and

z0(ζ ) = a
ζ

+ a
(

1 − 2
U

)
ζ . (2.28)

Note that this conformal map z0(ζ ) takes the upper unit ζ -circle to the lower bubble boundary.
We note that both W0(ζ ) and z0(ζ ) are given in terms of a single real parameter a which is related
to the bubble area A0 by

A0 = − 1
2i

∮
|ζ |=1

z(ζ )z′(ζ ) dζ = 4πa2(U − 1)
U2 , (2.29)

where we have used Green’s Theorem. The minus sign is necessary to ensure a positive quantity
because always U> 1. Fixing A0 = π readily implies that

a = U

2
√

U − 1
. (2.30)

For later reference, we note that for the special case U = 2, the elliptical bubble reduces to the unit
circle via the map z0(ζ ) = 1/ζ .

(c) Non-zero-surface-tension solutions
To incorporate the effect of a non-zero-surface-tension on the bubble boundary, it therefore seems
reasonable to seek a conformal map from Dζ to D in the form

z(ζ ) = z0(ζ ) + f (ζ ), (2.31)

where f (ζ ) can be viewed as a ‘perturbation function’ to the conformal mapping z0(ζ ) in order to
suitably compensate for non-zero-surface-tension effects on the bubble boundary. We emphasize
here that the ‘base solution’ z0(ζ ) itself depends on the speed U which is to be determined as part
of the solution process (the area parameter a also depends on U).

With the inclusion of surface tension on the bubble boundary, we have the following boundary
conditions to satisfy:

Im[W(ζ )] = 0, ζ ∈ C0; (2.32)

Re[W(ζ ) + Uz(ζ )] = Bκ + constant, ζ ∈ C0; (2.33)

W(ζ ) ∼ (1 − U)a
ζ

, ζ → 0. (2.34)

We claim that the one-parameter family of solutions we need are the following:

W(ζ ) ≡ W0(ζ ) (2.35)
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and
z(ζ ) ≡ z0(ζ ) + f (ζ ), (2.36)

with W0(ζ ) and z0(ζ ) given in (2.27) and (2.28), respectively. Here, f (ζ ) is a perturbation function,
analytic everywhere in Dζ , that incorporates the new physics from the addition of surface tension
to the bubble boundary. Note that adding a perturbation function g(ζ ) to the complex potential
is not necessary as this will invoke unnecessary calculations (e.g. enforcing Im[g(ζ )] = 0 on
|ζ | = 1, and would complicate equation (2.39) below); all the necessary and sufficient boundary
conditions can be enforced using the single perturbation function f (ζ ). This function must behave
as follows:

f (ζ ) ∼ constant, ζ → 0. (2.37)

This constant will set the centroid location of the bubble.
It is clear that (2.32) and (2.34) are satisfied by (2.35) and (2.36). To ensure that (2.33) is satisfied

by (2.35) and (2.36) also, note that it is a simple exercise to establish

Re[W(ζ ) + Uz(ζ )] ≡ URe[f (ζ )], ζ ∈ C0. (2.38)

Thus, we are left with the following equation to enforce:

URe[f (ζ )] = −B
(

1 + Re[ζ (z′′
0(ζ ) + f ′′(ζ ))/(z′

0(ζ ) + f ′(ζ ))]
|z′

0(ζ ) + f ′(ζ )|
)

, ζ ∈ C0. (2.39)

That is, to solve the problem, it is left to determine function f (ζ ), along with the two real numbers
a and U, satisfying equation (2.39) for some value of the surface tension parameter B and with the
area of the bubble A = π fixed

π = − 1
2i

∮
|ζ |=1

z(ζ )z′(ζ ) dζ . (2.40)

Once this has been achieved, we may plot the shape of the bubble free boundary via (2.36) as this
will be the image of C0 under the conformal mapping z(ζ ) = z0(ζ ) + f (ζ ).

We note the existence of the following trivial solutions for any non-zero surface tension B 
= 0
in (2.39), satisfying (2.40)

f (ζ ) = B
2

, U = 2, a = 1. (2.41)

These solutions, noted by Tanveer [15], correspond to circular bubbles of unit radius (as can easily
be seen from the mapping z0(ζ )). We refer to this branch of solution as the m = 0 branch. Thus
we see that the circular solution with U = 2 is selected as B → 0 in a trivial way (recall that, of
the continuum of elliptic bubbles for B = 0, the special case U = 2 is circular). Motivated by the
existence of multiple branches of solution in the related bubble and finger problems in a channel
geometry [14,15,17–19], we now look for other solutions, apart from (2.41), using numerical
techniques.

(d) Numerical scheme
We solve for the perturbation function f (ζ ) numerically by writing it as a truncated Taylor series

f (ζ ) =
N−1∑
j=0

ajζ
j, (2.42)

and computing the N real coefficients {aj}N−1
j=0 , and the two real parameters a and U. We chose

N = 200 for all our calculations after checking that this value of N gives the same solution for
N = 400 (up to at least eight decimal places). Note that all the coefficients {aj}N−1

j=0 are indeed
necessarily real because the bubble is assumed to be symmetric about the real axis. We have N + 2
real unknowns and N + 2 real equations to enforce: (2.39) at N + 1 equi-spaced points on the
upper arc of C0, {exp(π i(j − 1)/N))}N+1

j=1 , and the bubble area constraint (2.40). Thus, the counting
is consistent, and we may use the multi-dimensional Newton’s method to find solutions. This
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Figure 2. Plot of bubble speedU as a function of the surface tension parameterB for (a) solution branchesm= 0, 1, 2, 3 and (b)
solution branches 1≤ m≤ 12. Note the trivial solution branchm= 0 is the horizontal line U = 2. (Online version in colour.)

numerical scheme is well known to converge quadratically for initial estimates in suitable basins
of attraction. It can be shown using Cauchy’s residue theorem that, with (2.42), the area constraint
(2.40) reduces to the following simple algebraic expression:

1 = a2 −
(

a1 + a
(

1 − 2
U

))2
−

N−1∑
j=2

ja2
j . (2.43)

As all lengths in our problem are scaled with respect to a particular bubble area (recall (2.16)), it is
unnecessary to consider different bubble areas. Once a solution is computed for a given value of
B, a standard continuation procedure in B can be used to trace-out the full branch of solutions. By
standard continuation, we mean that we take a converged solution and use it as an initial guess
for another solution which has a slightly altered parameter value.

As mentioned in the previous subsection, the m = 0 branch of solutions (2.41) corresponds to
circular bubbles of unit radius. All of these solutions have a bubble speed U = 2, and thus we can
draw the m = 0 branch on a U versus B plot as a horizontal line, as in figure 2a. Interestingly, for
any reasonable initial guess (which is not precisely or very close to (2.41)), our Newton code did
not converge to this trivial solution, but instead converged to the next branch of solutions, which
we call the m = 1 branch. By applying a continuation procedure, we computed solutions on this
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Figure 3. Bubble shapes for increasing values of the surface tension parameter B: (a) m= 1 branch; (b) m= 2 branch;
(c)m= 3 branch; (d)m= 4 branch; (e)m= 7 branch; (f )m= 10 branch.

branch, with the dependence of the bubble speed U on the surface tension B shown in figure 2a.
We see that U is monotonically decreasing with B, and it appears that U → 2 as B → 0.

The shape of the bubbles along the m = 1 branch is interesting, as can be seen in figure 3a. For
small values of surface tension B, the bubble is nearly circular. As B increases, the bubble deforms
until it becomes non-convex at a finite value of B. For higher surface tension values, the bubble
appears to have two ‘tips’ or ‘dimples’. This behaviour is qualitatively similar to that observed by
Tanveer [8] for a bubble in a channel geometry; he referred to the analogous branch of solutions as
the ‘extraordinary’ branch. Further, these shapes are similar to the double-tipped finger solutions
computed by Franco-Gómez et al. [31], Gardiner et al. [19] and Thompson et al. [32].

Locking on to other solution branches for m ≥ 2 was done using the following technique. We
introduce a new parameter β such that

URe[f (1)] = −B
(

1 + Re[(z′′
0(1) + f ′′(1))/(z′

0(1) + f ′(1))]
|z′

0(1) + f ′(1)|
)

+ β. (2.44)

We then solve (2.44) together with (2.39) at the remaining points along the upper unit ζ -circle for
β, a and {aj}N−1

j=0 for given fixed values of U and B. The physical solution space then corresponds
to solutions with β = 0 (for β 
= 0, the artificial solution space corresponds to bubbles with a
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Figure 4. Plot of β as a function of U for B= 0.02 fixed. Shown by dots are the seven bubble solutions found corresponding
to the branchesm= 0, 1, 2, . . . , 6 for this value of the surface tension. (Online version in colour.)

log10B

–2.0 –1.8 –1.6 –1.4 –1.2 –1.0 –0.8 –0.6 –0.4

lo
g 10

(2
−

U
)

–2.5

–2.0

–1.5

–1.0

–0.5

0

m = 2

m = 3

m = 1

Figure 5. Plot of log10(2 − U) versus log10 B for solution branchesm= 1, 2, 3. (Online version in colour.)

corner/sharp tip at the leading edge). This approach was adopted in [19], for instance, for the
finger problem. Figure 4 shows a plot of β as a function of U for B = 0.02 fixed. The points of
intersection with the line β = 0 indicate the physical bubble solutions. All solutions for β as a
function of U are shown. This is corroborated by the data in figure 2b which reveals the existence
of six solution branches having B = 0.02 (in addition to the trivial solution for m = 0).

Our results for U versus B for solution branches up to m = 12 are shown in figure 2. It appears
from this data that U → 2 as B → 0 on all of the branches, which is consistent with the previously
mentioned studies for a steadily propagating bubble in a channel geometry [8,14–16] (as well as
the analogous problem for a Saffman–Taylor finger propagating in a channel [17–24]). In Figure 5,
we present the same data for the first few non-trivial branches, but this time on a log–log plot. We
see that as log B → −∞, the data appears to follow a straight line with slope 2, which suggests
that

U ∼ 2 − kB2, B → 0, (2.45)

where k is a constant that depends on m.
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The quadratic scaling (2.45) is interesting because it is different to the analogous bubble and
finger problems in a channel, for which the relevant scaling is U ∼ 2 − kB2/3. Note that this
finding is consistent with the results for a bubble in a channel geometry, because the limit of
the channel walls moving to infinity does not commute with the limit of the vanishing surface
tension for a fixed channel and so the analysis for a channel with walls does not carry over to
the unbounded case. In particular, if we denote the dimensional channel width by 2H, the B2/3

scaling for the channel problem comes from decreasing the dimensional surface tension σ while
keeping the dimensional bubble area Ã and H fixed. To take the small bubble limit in the channel
configuration, we would need to decrease Ã with H and σ fixed; however, it turns out that there
are no solutions to the channel problem in this limit for Ã/H below some critical value (see the
Introduction of [16], for example). Thus, the channel framework is not applicable in the small
bubble limit. Furthermore, taking the other limit of increasing H while fixing the area Ã and the
surface tension σ leads to a degenerate limit that provides no information at all.

Returning to the shape of the bubbles in figure 3, each branch of solutions follows a certain
pattern. We have already noted that the m = 0 solutions are all circles, which can be thought of
as having a single tip, and the m = 1 solutions have a double tip (for sufficiently large B). In
figure 3b, we see for the m = 2 branch that for small surface tension the bubbles are again convex;
however, for sufficiently large surface tension, the bubbles become non-convex with three tips.
The pattern continues in figures 3c, d, etc., so that we observe bubble shapes with m + 1 tips on
the mth branch of solutions. Further, the right-most point at which the bubble intersects the x-
axis alternates from being locally convex (m even) to locally concave (m odd) as m increases.
This multiple tip and alternating convex/concave behaviour is analogous to the behaviour of
Saffman–Taylor fingers [19].

3. Two bubbles
The selection mechanism for more than one bubble does not appear to have received any prior
attention. To make progress, we will consider the special case of two up-down symmetric bubbles
in steady motion in the unbounded Hele-Shaw cell, as shown in figure 6. This problem presents
several interesting key features, not least because the separation between the two bubbles is now
another key factor in the selection mechanism. Crucially, this symmetric pair of bubbles also has
a zero-surface-tension solution governing their shapes (Crowdy [5]), as we discuss later in this
section (see (3.14)–(3.15)).

(a) Problem formulation
Consider two bubbles which are up-down symmetric in shape (by which we mean symmetric
through the real axis, say) in steady motion in an unbounded Hele-Shaw cell. The up-down
symmetry of this bubble configuration affords us several pleasant analytical simplifications. Let D
be the unbounded planar region, in the z = x + iy-plane, containing incompressible fluid exterior
to the bubble pair, with each bubble having the same finite area. Denote the upper bubble by
D0 and its boundary by ∂D0; denote the lower bubble by D1 and its boundary by ∂D1. We will
assume that the bubble pair is moving with constant speed U in the x-direction, and that the fluid
velocity far away from the bubbles is in the x-direction with constant speed V. The velocity field
u is derived from a velocity potential φ so that u = ∇φ.

We thus have the following problem to solve, for the velocity potential φ and the
streamfunction ψ , pertaining to two up-down symmetric bubbles in an unbounded Hele-Shaw
cell in a frame of reference co-travelling with the bubble pair at speed U

∇2φ = 0, z ∈ D; (3.1)

φ + Ux = Bκ + φ0, z ∈ ∂D0; (3.2)
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Figure 6. Schematic of the pre-image parametric ζ -plane being the interior of the annulus ρ < |ζ |< 1 with boundaries
consisting of the two circles C0 and C1 (a), and the target image domain in the z-plane exterior to the two bubbles (b).

φ + Ux = Bκ + φ1, z ∈ ∂D1; (3.3)

ψ = 0, z ∈ ∂D0; (3.4)

ψ =ψ1, z ∈ ∂D1; (3.5)

φ ∼ (1 − U)x, |z| → ∞. (3.6)

In the above, φ0, φ1 andψ1 are real constants. It makes sense, thus, to solve for a complex potential
function w(z) = φ + iψ for this flow whose real and imaginary parts are respectively the velocity
potential φ and the streamfunction ψ . Function w must be a single-valued analytic function
everywhere in D. A natural way of doing this is to pull-back to a simpler parametric ζ -plane
and proceed to find the composition W(ζ ) = w(z(ζ )), where z(ζ ) is a conformal map to the fluid
region D exterior to the bubble, and must also be determined. Label the pre-image region of D
in the ζ -plane by Dζ which may be taken to be the concentric annular region ρ < |ζ |< 1, without
loss of generality. Let C0 label the circle |ζ | = 1 and C1 label the circle |ζ | = ρ. The Riemann–Koebe
mapping theorem [33] guarantees the existence of a conformal mapping z(ζ ) between the two
doubly connected regions Dζ and D. We will now re-write the problem (3.1)–(3.6) in terms of the
complex functions z(ζ ) and W(ζ ), or equivalently, in terms of the complex variable ζ . Figure 6
shows a schematic.

In the frame of reference co-travelling with the two bubbles, the complex potential w(z) is
related to the complex potential w̃(z) in the laboratory frame via w(z) = w̃(z) − Uz. It follows that w
is a single-valued analytic function everywhere in D except for a simple pole singularity at infinity.
Equivalently, W(ζ ) is a single-valued analytic function everywhere in Dζ except for a simple pole
singularity at the point ζ = β ∈ Dζ (say) mapping to infinity. Correspondingly, the conformal map
z(ζ ) must have a simple pole also at ζ = β but is otherwise analytic and single-valued. This means
that locally, we must have

z(ζ ) ∼ a
ζ − β

, ζ → β, (3.7)

for some constant a, which can be taken to be real; this leaves two remaining real degrees of
freedom associated with the Riemann mapping theorem which allows us to choose β = i

√
ρ. We

will construct z(ζ ) such that C1 maps to the upper bubble boundary ∂D0 and C0 maps to the lower
bubble boundary ∂D1.

It is a trivial observation that if W(ζ ) =Φ + iΨ is a single-valued analytic function of ζ , then
both its real and imaginary parts Φ and Ψ are necessarily harmonic, as required. (3.2) and (3.3)
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become
Re[W(ζ ) + Uz(ζ )] = Bκ + c0, ζ ∈ C0 (3.8)

and
Re[W(ζ ) + Uz(ζ )] = Bκ + c1, ζ ∈ C1, (3.9)

where an expression for the curvature κ is as in (2.23), and c0 and c1 are real constants. (3.4) and
(3.5) are simply

Im[W(ζ )] = 0, ζ ∈ C0 (3.10)

and
Im[W(ζ )] = d1, ζ ∈ C1, (3.11)

where d1 is a real constant. (3.6) transforms to

W(ζ ) ∼ (1 − U)z(ζ ), ζ → β, (3.12)

which, in the light of (3.7) and the choice β = i
√
ρ, is

W(ζ ) ∼ (1 − U)a
ζ − i

√
ρ

, ζ → i
√
ρ. (3.13)

(b) Zero-surface-tension solutions
Let W0(ζ ) and z0(ζ ) be the complex potential and conformal map we seek for the bubble pair
without surface tension. The complex potential for a pair of up-down symmetric bubbles with
zero surface tension in an unbounded Hele-Shaw cell can be derived using the most general
result (for any finite number of bubbles) in Crowdy [5]

W0(ζ ) = ia(1 − U)√
ρ

[
1 − K

(−iζ√
ρ

; ρ
)

− K(−iζ
√
ρ; ρ)

]
. (3.14)

Using the other general result of [5], the conformal map z0(ζ ) from Dζ to the exterior D of an
up-down symmetric pair of bubbles (about the real axis) is

z0(ζ ) = ia√
ρ

[
1
2

− K
(−iζ√

ρ
; ρ
)

−
(

1 − 2
U

)
K(−iζ

√
ρ; ρ)

]
. (3.15)

Here, the function K(ζ ; ρ) is defined through the following logarithmic derivative relation

K(ζ ; ρ) = ζ
d

dζ
log P(ζ ; ρ) = ζ

ζ − 1
−

∞∑
j=1

ρ2jζ

1 − ρ2jζ
+

∞∑
j=1

ρ2jζ−1

1 − ρ2jζ−1
, (3.16)

where P(ζ ; ρ) is the Schottky–Klein prime function associated with Dζ and is given by the rapidly
convergent infinite product

P(ζ ; ρ) = (1 − ζ )
∞∏

j=1

(1 − ρ2jζ )(1 − ρ2jζ−1). (3.17)

For an overview of the Schottky–Klein prime function and a novel way to compute it, see [6,7].
The P-function (3.17) arises naturally when mapping from an annulus and has been used in the
analysis of other Hele-Shaw flow problems with doubly connected domains [34–37]. Note that
the conformal map z0(ζ ) in (3.15) maps C0 to the lower bubble and C1 to the upper bubble, the
circle |ζ | = √

ρ maps to the real z-axis, and z0(−i
√
ρ) = 0.

We note that both W0(ζ ) and z0(ζ ) are given in terms of two real parameters a and ρ which are
respectively related to the area of the bubbles A0 by

A0 = − 1
2i

∮
|ζ |=1

z(ζ )z′(ζ ) dζ = − 1
2i

∮
|ζ |=ρ

z(ζ )z′(ζ ) dζ (3.18)

and the separation of the bubbles (the bubbles are closest as ρ→ 1). We may set A0 = π as before.

 on July 30, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


14

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170050

...................................................

(c) Non-zero-surface-tension solutions
To incorporate the effect of a non-zero surface tension on the bubble boundaries, it therefore seems
reasonable to seek a conformal map from Dζ to D in the form

z(ζ ) = z0(ζ ) + f (ζ ), (3.19)

where f (ζ ) can be viewed as a perturbation function to the conformal mapping z0(ζ ) in order to
suitably compensate for non-zero-surface-tension effects on the two bubble boundaries.

With the inclusion of surface tension on the bubble boundary, we have the following boundary
conditions to satisfy:

Im[W(ζ )] = 0, ζ ∈ C0; (3.20)

Im[W(ζ )] = d1, ζ ∈ C1; (3.21)

Re[W(ζ ) + Uz(ζ )] = Bκ + c0, ζ ∈ C0; (3.22)

Re[W(ζ ) + Uz(ζ )] = Bκ + c1, ζ ∈ C1; (3.23)

W(ζ ) ∼ (1 − U)a
ζ − i

√
ρ

, ζ → i
√
ρ. (3.24)

We claim that the two-parameter family of solutions we need are the following:

W(ζ ) ≡ W0(ζ ) (3.25)

and
z(ζ ) ≡ z0(ζ ) + f (ζ ), (3.26)

with W0(ζ ) and z0(ζ ) given in (3.14) and (3.15), respectively. Here, f (ζ ) is a perturbation function,
analytic everywhere in the annulus Dζ . As before, note that adding a perturbation function to
the complex potential is not necessary as this will invoke unnecessary calculations. This function
must behave as follows:

f (ζ ) ∼ constant, ζ → i
√
ρ. (3.27)

This constant sets the centroid locations of the bubbles.
It is clear that (3.20), (3.21) and (3.24) are satisfied by (3.25) and (3.26). To ensure that (3.22) and

(3.23) are satisfied by (3.25) and (3.26) also, note that

Re[W(ζ ) + Uz(ζ )] ≡ URe[f (ζ )], ζ ∈ C0, C1. (3.28)

This result is established in the appendix. Thus we are left with the following two equations to
enforce:

URe[f (ζ )] = −B
(

1 + Re[ζ (z′′
0(ζ ) + f ′′(ζ ))/(z′

0(ζ ) + f ′(ζ ))]
|z′

0(ζ ) + f ′(ζ )|
)

, ζ ∈ C0. (3.29)

It is automatic from the up-down symmetry of the bubble configuration that if (3.29) is satisfied
for ζ ∈ C0, then

URe[f (ζ )] = −B
(

1 + Re[ζ (z′′
0(ζ ) + f ′′(ζ ))/(z′

0(ζ ) + f ′(ζ ))]
ρ|z′

0(ζ ) + f ′(ζ )|
)

, ζ ∈ C1. (3.30)

That is, to solve the problem, it is left to determine function f (ζ ), along with the two real numbers a
and U, satisfying equation (3.29), for a given separation (ρ fixed), as the surface tension parameter
B varies and the area of the bubbles A = π is fixed

π = − 1
2i

∮
|ζ |=1

z(ζ )z′(ζ ) dζ . (3.31)

Once this is achieved, we may plot the shape of the free boundaries of the bubbles via (3.26)
as they will be the images of C0 and C1 under the conformal mapping z(ζ ) = zo(ζ ) + f (ζ ).
There is no pleasant way to simplify the evaluation of the area integral (3.31) and produce an
algebraic expression for the area (analogous to (2.43)), so we resort to using the trapezium rule to
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enforce (3.31) which is well known to converge geometrically for analytic functions on periodic
intervals [38].

(d) Numerical scheme
One may solve for the perturbation function f (ζ ) numerically by writing it as a truncated Laurent
series

f (ζ ) =
N∑

j=−N

ajζ
j, (3.32)

where the 2N + 1 coefficients {aj}N
j=−N are in general complex numbers. However, the up-down

symmetry of the bubble configuration affords us a simplification through the following analytic
relation which must hold for all ζ :

z(ρζ ) = z̄
(

1
ζ

)
. (3.33)

It can be verified that map z0(ζ ) automatically satisfies this relation. We thus require f (ζ ) to do so
too; it may be deduced that

a−j = ρjāj, j = 1, . . . , N, (3.34)

and a0 is purely real. Hence

f (ζ ) = a0 +
N∑

j=1

(ajζ
j + ρjājζ

−j). (3.35)

Equation (3.33) is a symmetry condition that comes from analytic continuation off the |ζ | = √
ρ

circle (the pre-image of the real axis). For all points on this circle, we have z(ζ ) = z(ζ ). But ζ = ρ/ζ

on |ζ | = √
ρ, thus z(ζ ) = z(ρ/ζ ) or, equivalently, z(ρζ ) = z(1/ζ ). Hence, being an analytic relation

of ζ on |ζ | = √
ρ, it may be analytically continued off this circle into the annulus ρ ≤ |ζ | ≤ 1. The

reader is referred to figure 6 to visualize these actions.
As with a single bubble, we took N = 200. Writing aj = ajr + iaji, j = 1, . . . , N, we see that we are

left to solve for the 2N + 1 real numbers a0, {ajr, aji}N
j=1, in addition to the two real parameters a

and U appearing in W0(ζ ) and z0(ζ ), for some fixed value of ρ. We have 2N + 3 real unknowns
and 2N + 3 real equations to enforce: (3.29) at 2N + 2 equi-spaced points around C0, {exp(2π i(j −
1)/(2N + 2)))}2N+2

j=1 , and the bubble area constraint (3.31). Thus, the counting is consistent, and we
may use a multi-dimensional Newton’s method to find solutions. For a fixed separation ρ, once
a solution was found for a given value of B, a standard continuation procedure in B is used to
trace-out the full branch of solutions.

To solve our system, a Jacobian-free Newton–Krylov method [39] implemented by the
SUNDIALS software package KINSOL [40] was employed to reduce computational times (i.e.
eliminate the need to re-calculate the Jacobian matrix in each iteration) and allow for the solution
of a large number of modes N in (3.35); indeed, the retention of late order modes becomes
important as B and ρ increase. Using a Jacobian-free Newton–Krylov method was unnecessary
in the case of one bubble because the functions involved were far less computationally intensive
and the parameter space was smaller.

An initial observation is that our Newton code did not converge to a solution on a branch that
could be considered an analogue of the m = 0 branch for the single bubble problem, (2.41). Thus
we do not have evidence that there is a non-trivial version of (2.41) for two bubbles. We could,
however, compute solutions on the other branches m ≥ 1. For example, figure 7 shows bubbles,
each with a different surface tension parameter B, on the m = 1 and m = 2 solution branches in the
upper-half z-plane for a fixed separation parameter value ρ = 0.0001 (the corresponding bubble in
the lower-half z-plane will assume the same shape, owing to the enforced up-down symmetry).
This value of ρ is quite small, so the two bubbles will be far apart. We see that as B increases,
the bubble shapes appear to be qualitatively very similar to those that we computed using the
simply connected mapping in the previous section; this is reassuring given that the functions
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Figure 7. Upper bubble shapes (lower bubble shapes are identical) for specified values of the surface tension parameter Bwith
the separation parameterρ = 0.0001 fixed:m= 1 branch (a);m= 2 branch (b). (Online version in colour.)

involved with the doubly connected mapping in this section are indeed non-trivial. For these
large separations, the speed U selected and the Taylor series part of the perturbation function are
very close to the analogous solutions for one bubble. As can also be seen in figure 7, with the
surface tension parameter reduced to zero, the shape of the bubbles on both solution branches
returns to the shape determined by the zero-surface-tension conformal map which, given that
these bubbles are well separated, are shapes which are near circular.

We were not able to generate solutions of sufficient accuracy as ρ ∼O(0.1) which we suspect
might be due to the late order modes in (3.35) becoming increasingly challenging to compute
sufficiently accurately as both B and ρ increase. It is expected that the exotic shapes we observed
for the single bubbles will be replicated very closely on each of the solution branches m ≥ 1 when
the two bubbles are well separated (small ρ). As the bubbles become closer together (larger ρ), for
a fixed value of B, further interesting shapes are expected as the bubbles begin to interact.

4. Discussion
In this paper, we consider steadily propagating bubbles in an unbounded Hele-Shaw cell. We
apply conformal mapping and numerical techniques to compute their shapes and their speed
as a function of the dimensionless surface tension parameter B. The important idea is to write
the solution for the conformal map as the sum of the zero-surface-tension solution z0(ζ ) and an
unknown analytic function f (ζ ) whose real part satisfies a highly nonlinear condition on the unit
circle in the conformally mapped ζ -plane. We consider two geometries. For a single propagating
bubble, the zero-surface-tension solution z0(ζ ) is associated with a simply connected map from
the unit disc in the ζ -plane to the outside of the bubble in the physical plane; the straightforward
solution represents a one-parameter family of elliptic bubbles, where U is the parameter. For
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two bubbles that are up-down symmetric, the doubly connected solution involves mapping from
an annulus in the ζ -plane. Here, the zero-surface-tension solution z0(ζ ) is due to Crowdy [5]
and is related to the Schottky–Klein prime function [6,7]. This two-bubble solution depends
continuously on two parameters, the bubble speed U and a mapping parameter ρ that has the
property that ρ→ 0 as the separation distance between the two bubbles goes to infinity.

For both the single bubble and two-bubble problems, our numerical results demonstrate a
countably infinite number of solution branches for all B> 0, which we label m = 0, 1, 2, . . .. For
each solution branch, the bubble speed is U< 2, with the selection of the U = 2 solution in the
limit B → 0. The existence of a discrete set of solutions and the selection of U = 2 in the limit
B → 0 is perfectly analogous to the related bubble and finger problems in a channel geometry [14,
15,17–19]. However, it is interesting to note that our numerical results suggest that the scaling for
our unbounded Hele-Shaw cell is U ∼ 2 − kB2 as B → 0, which is different to the scaling for the
channel problems, namely U ∼ 2 − kB2/3 as B → 0.

A worthwhile exercise would be to confirm this new scaling by analysing the selection problem
analytically using exponential asymptotics. Such an analysis will revolve around the asymptotic
series

z(ζ ) ∼
∞∑

n=0

Bnfn(ζ ) as B → 0, (4.1)

where f0(ζ ) ≡ z0(ζ ) at leading order. Such a series will be divergent, but can be truncated in an
optimal sense so that the remainder is exponentially small in B. The goal of analysing such a
selection problem would be to determine a solvability condition that ensures these exponentially
small terms are ‘switched on’ and ‘switched off’ at various points on the bubble boundary in such
a way that the boundary itself remains smooth. The details of this type of analysis are beyond the
scope of this present numerical study.

Another interesting feature of our numerical results is that for sufficiently large surface
tension, the bubbles become non-convex with the emergence of double-tipped solutions for
m = 1, triple-tipped solutions for m = 2, and so on. The double-tipped solutions were presented
by Tanveer [8] for bubbles in a channel geometry while analogous families of multiple-tipped
solutions were computed by Gardiner et al. [19] for the Saffman–Taylor finger problem in a
channel. While our bubble solutions for m ≥ 1 are quite possibly unstable, there is an intriguing
possibility of observing multiple-tipped bubbles propagating in a Hele-Shaw cell with channel-
depth perturbations using the experimental set up by Juel and co-workers [31,32,41,42]. From
a mathematical perspective, the birth of the multiple tips as surface tension increases along a
solution branch is likely to be related to exponentially small terms that appear beyond all orders
of an algebraic expansion in surface tension. We leave these issues for further research.

Finally, it would be interesting to generalize the results presented here to the case of two
symmetric bubbles moving in tandem or two arbitrarily configured non-symmetric bubbles, or
even p ≥ 3 bubbles of any configuration. For the latter case, the relevant zero-surface-tension
solutions z0(ζ ) and W0(ζ ) are already known [5], and are expressed in terms of general Schottky–
Klein prime functions defined over bounded p connected circular domains (the intersection
of the interior of the unit disc and the exterior of p − 1 circles lying within the unit disc).
The perturbation function to z0(ζ ) will take the form of a general Fourier–Laurent expansion
consisting of a Taylor series and p − 1 Laurent series about the p − 1 interior circles. Despite the
availability of fast and accurate software to compute the Schottky–Klein prime function [7], these
more general selection problems are expected to be very computationally intensive because the
loss of symmetry would imply a curvature condition akin to (3.29) having to be enforced on
each of the p boundary components. Furthermore, analogous analytical simplifications, such as
those we highlighted in the case of two up-down symmetric bubbles, will not be available (except
perhaps for the case of two bubbles in tandem).
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Appendix
In this appendix, we show why (3.28) holds true; that is

Re[W0(ζ ) + U(z0(ζ ) + f (ζ ))] ≡ URe[f (ζ )], ζ ∈ C0, C1. (A 1)

It can be shown that function K(ζ ; ρ) in (3.16) satisfies the two functional identities:

K
(

1
ζ

; ρ
)

= 1 − K(ζ ; ρ) and K(ρ2ζ ; ρ) = K(ζ ; ρ) − 1. (A 2)

These two functional relations are all that is needed to establish (A 1).
Now, for all ζ ∈ C0, ζ̄ = 1/ζ and we calculate Re[W0(ζ )] to be

ia(1 − U)
2
√
ρ

[
−K

(
− iζ√

ρ
; ρ
)

− K(−iζ
√
ρ; ρ) + K

(
i

ζ
√
ρ

; ρ
)

+ K
(

i
√
ρ

ζ
; ρ
)]

. (A 3)

On use of the first of the relations in (A 2), we have thus

Re[W0(ζ )] = W0(ζ ), ζ ∈ C0. (A 4)

A similar calculation produces

Re[Uz0(ζ )] = −W0(ζ ), ζ ∈ C0. (A 5)

On the other hand, for all ζ ∈ C1, ζ̄ = ρ2/ζ and Re[W0(ζ )] can be shown to be

ia(1 − U)
2
√
ρ

[
−K

(−iζ√
ρ

; ρ
)

− K(−iζ
√
ρ; ρ) + K

(
iρ2

ζ
√
ρ

; ρ

)
+ K

(
iρ2√ρ
ζ

; ρ

)]
. (A 6)

Using the second of the relations in (A 2),

ia(1 − U)
2
√
ρ

[
−K

(−iζ√
ρ

; ρ
)

− K(−iζ
√
ρ; ρ) + K

(
i

ζ
√
ρ

; ρ
)

+ K
(

i
√
ρ

ζ
; ρ
)

− 2
]

, (A 7)

followed by the first of the relations in (A 2), yields

Re[W0(ζ )] = − ia(1 − U)√
ρ

[
K
(−iζ√

ρ
; ρ
)

+ K(−iζ
√
ρ; ρ)

]
, ζ ∈ C1. (A 8)

A similar calculation reveals that

Re[Uz0(ζ )] = ia(1 − U)√
ρ

[
K
(−iζ√

ρ
; ρ
)

+ K(−iζ
√
ρ; ρ)

]
, ζ ∈ C1. (A 9)

Thus, (A 1) has indeed been verified.
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